scholarly journals MyD88-dependent signaling in non-parenchymal cells promotes liver carcinogenesis

2019 ◽  
Vol 41 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Antje Mohs ◽  
Nadine Kuttkat ◽  
Tobias Otto ◽  
Sameh A Youssef ◽  
Alain De Bruin ◽  
...  

Abstract In Western countries, a rising incidence of obesity and type 2 diabetes correlates with an increase of non-alcoholic steatohepatitis (NASH)—a major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). NASH is associated with chronic liver injury, triggering hepatocyte death and enhanced translocation of intestinal bacteria, leading to persistent liver inflammation through activation of Toll-like receptors and their adapter protein myeloid differentiation factor 88 (MyD88). Therefore, we investigated the role of MyD88 during progression from NASH to HCC using a mouse model of chronic liver injury (hepatocyte-specific deletion of nuclear factor κB essential modulator, Nemo; NemoΔhepa). NemoΔhepa; NemoΔhepa/MyD88−/− and NemoΔhepa/MyD88Δhepa were generated and the impact on liver disease progression was investigated. Ubiquitous MyD88 ablation (NemoΔhepa/MyD88−/−) aggravated the degree of liver damage, accompanied by an overall decrease in inflammation, whereas infiltrating macrophages and natural killer cells were elevated. At a later stage, MyD88 deficiency impaired HCC formation. In contrast, hepatocyte-specific MyD88 deletion (NemoΔhepa/MyD88Δhepa) did not affect disease progression. These results suggest that signaling of Toll-like receptors through MyD88 in non-parenchymal liver cells is required for carcinogenesis during chronic liver injury. Hence, blocking MyD88 signaling may offer a therapeutic option to prevent HCC formation in patients with NASH.

Author(s):  
Tetsuo Takehara ◽  
Naoki Mizutani ◽  
Hayato Hikita ◽  
Yoshinobu Saito ◽  
Yuta Myojin ◽  
...  

Grb2-associated binder 1 (Gab1) is an adaptor protein that is important for intracellular signal transduction by receptor tyrosine kinases that are receptors for various growth factors and plays an important role in rapid liver regeneration after partial hepatectomy and during acute hepatitis. On the other hand, mild liver regeneration is induced in livers of individuals with chronic hepatitis, where hepatocyte apoptosis is persistent; however, the impact of Gab1 on such livers remains unclear. We examined the role of Gab1 in chronic hepatitis. Gab1 knockdown enhanced the decrease in cell viability and apoptosis induced by ABT-737, a Bcl-2/-xL/-w inhibitor, in BNL.CL2 cells, while cell viability and caspase activity were unchanged in the absence of ABT-737. ABT-737 treatment induced Gab1 cleavage to form p35-Gab1. p35-Gab1 was also detected in the livers of mice with hepatocyte-specific Mcl-1 knockout (KO), which causes persistent hepatocyte apoptosis. Gab1 deficiency exacerbated hepatocyte apoptosis in Mcl-1 KO mice with posttranscriptional downregulation of Bcl-XL. In BNL.CL2 cells treated with ABT-737, Gab1 knockdown posttranscriptionally suppressed Bcl-xL expression, and p35-Gab1 overexpression enhanced Bcl-xL expression. Gab1 deficiency in Mcl-1 KO mice activated STAT3 signaling in hepatocytes, increased hepatocyte proliferation, and increased the incidence of liver cancer with the exacerbation of liver fibrosis. In conclusion, Gab1 is cleaved in the presence of apoptotic stimuli and forms p35-Gab1 in hepatocytes. In chronic liver injury, the role of Gab1 in suppressing apoptosis and reducing liver damage, fibrosis, and tumorigenesis is more important than its role in liver regeneration.


Gut ◽  
2018 ◽  
Vol 68 (3) ◽  
pp. 522-532 ◽  
Author(s):  
Aida Habib ◽  
Dina Chokr ◽  
JingHong Wan ◽  
Pushpa Hegde ◽  
Morgane Mabire ◽  
...  

ObjectiveSustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid. Here, we investigated the impact of MAGL on inflammation and fibrosis during chronic liver injury.DesignC57BL/6J mice and mice with global invalidation of MAGL (MAGL-/-), or myeloid-specific deletion of either MAGL (MAGLMye-/-), ATG5 (ATGMye-/-) or CB2 (CB2Mye-/-), were used. Fibrosis was induced by repeated carbon tetrachloride (CCl4) injections or bile duct ligation (BDL). Studies were performed on peritoneal or bone marrow-derived macrophages and Kupffer cells.ResultsMAGL-/- or MAGLMye-/- mice exposed to CCl4 or subjected to BDL were more resistant to inflammation and fibrosis than wild-type counterparts. Therapeutic intervention with MJN110, an MAGL inhibitor, reduced hepatic macrophage number and inflammatory gene expression and slowed down fibrosis progression. MAGL inhibitors also accelerated fibrosis regression and increased Ly-6Clow macrophage number. Antifibrogenic effects exclusively relied on MAGL inhibition in macrophages, since MJN110 treatment of MAGLMye-/- BDL mice did not further decrease liver fibrosis. Cultured macrophages exposed to MJN110 or from MAGLMye-/- mice displayed reduced cytokine secretion. These effects were independent of the cannabinoid receptor 2, as they were preserved in CB2Mye-/- mice. They relied on macrophage autophagy, since anti-inflammatory and antifibrogenic effects of MJN110 were lost in ATG5Mye-/- BDL mice, and were associated with increased autophagic flux and autophagosome biosynthesis in macrophages when MAGL was pharmacologically or genetically inhibited.ConclusionMAGL is an immunometabolic target in the liver. MAGL inhibitors may show promising antifibrogenic effects during chronic liver injury.


2021 ◽  
Vol 14 ◽  
pp. 175628482110234
Author(s):  
Mario Romero-Cristóbal ◽  
Ana Clemente-Sánchez ◽  
Patricia Piñeiro ◽  
Jamil Cedeño ◽  
Laura Rayón ◽  
...  

Background: Coronavirus disease (COVID-19) with acute respiratory distress syndrome is a life-threatening condition. A previous diagnosis of chronic liver disease is associated with poorer outcomes. Nevertheless, the impact of silent liver injury has not been investigated. We aimed to explore the association of pre-admission liver fibrosis indices with the prognosis of critically ill COVID-19 patients. Methods: The work presented was an observational study in 214 patients with COVID-19 consecutively admitted to the intensive care unit (ICU). Pre-admission liver fibrosis indices were calculated. In-hospital mortality and predictive factors were explored with Kaplan–Meier and Cox regression analysis. Results: The mean age was 59.58 (13.79) years; 16 patients (7.48%) had previously recognised chronic liver disease. Up to 78.84% of patients according to Forns, and 45.76% according to FIB-4, had more than minimal fibrosis. Fibrosis indices were higher in non-survivors [Forns: 6.04 (1.42) versus 4.99 (1.58), p < 0.001; FIB-4: 1.77 (1.17) versus 1.41 (0.91), p = 0.020)], but no differences were found in liver biochemistry parameters. Patients with any degree of fibrosis either by Forns or FIB-4 had a higher mortality, which increased according to the severity of fibrosis ( p < 0.05 for both indexes). Both Forns [HR 1.41 (1.11–1.81); p = 0.006] and FIB-4 [HR 1.31 (0.99–1.72); p = 0.051] were independently related to survival after adjusting for the Charlson comorbidity index, APACHE II, and ferritin. Conclusion: Unrecognised liver fibrosis, assessed by serological tests prior to admission, is independently associated with a higher risk of death in patients with severe COVID-19 admitted to the ICU.


2017 ◽  
Vol 66 (1) ◽  
pp. S6
Author(s):  
L.-A. Clerbaux ◽  
R. Manco ◽  
N. Van Hul ◽  
R. Español-Suñer ◽  
C. Bouzin ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lixiang Wang ◽  
Xin Li ◽  
Yuki Hanada ◽  
Nao Hasuzawa ◽  
Yoshinori Moriyama ◽  
...  

AbstractMitochondrial fusion and fission, which are strongly related to normal mitochondrial function, are referred to as mitochondrial dynamics. Mitochondrial fusion defects in the liver cause a non-alcoholic steatohepatitis-like phenotype and liver cancer. However, whether mitochondrial fission defect directly impair liver function and stimulate liver disease progression, too, is unclear. Dynamin-related protein 1 (DRP1) is a key factor controlling mitochondrial fission. We hypothesized that DRP1 defects are a causal factor directly involved in liver disease development and stimulate liver disease progression. Drp1 defects directly promoted endoplasmic reticulum (ER) stress, hepatocyte death, and subsequently induced infiltration of inflammatory macrophages. Drp1 deletion increased the expression of numerous genes involved in the immune response and DNA damage in Drp1LiKO mouse primary hepatocytes. We administered lipopolysaccharide (LPS) to liver-specific Drp1-knockout (Drp1LiKO) mice and observed an increased inflammatory cytokine expression in the liver and serum caused by exaggerated ER stress and enhanced inflammasome activation. This study indicates that Drp1 defect-induced mitochondrial dynamics dysfunction directly regulates the fate and function of hepatocytes and enhances LPS-induced acute liver injury in vivo.


Sign in / Sign up

Export Citation Format

Share Document