scholarly journals Micro grid for All India Institute of Medical Sciences, Madurai

Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 254-272
Author(s):  
C Palanichamy ◽  
P Naveen

Abstract In 2018, the Government of India approved the establishment of the New All India Institute of Medical Sciences (AIIMS) in Thoppur, Madurai, Tamil Nadu, India. As the most important amenity for continuing primary care and rescue response is a healthcare facility, a secure electricity supply becomes an imperative necessity. Hence, as the energy supplier for the new AIIMS, Madurai, this paper proposes a microgrid combined with the utility grid. The microgrid consists of a 4-MW photovoltaic system, a 1.8-MW wind-turbine energy-conversion system, a backup diesel generator capable of meeting the forecasted maximum demand and a 1-MW battery energy-storage system. The AIIMS Microgrid will have a service providing a capacity of 20 MVA following integration with the utility grid. The proposed microgrid would be the first attempt at healthcare facilities in India since its first day of work to ensure the availability of electricity. It would have a 9.8% return on investment, a 13.6% internal rate of return and a payback period of 6.75 years once it is operational, as well as an attractive levelized cost of energy (LCOE) of USD 0.07547/kWh. It would provide an environmentally friendly atmosphere by avoiding an annual emission of 6 261 132 kg of carbon dioxide, 27 362 kg of sulphur dioxide and 12 838 kg of nitrogen oxides as compared to power supplied entirely from the utility grid.

2021 ◽  
Vol 5 (2) ◽  
pp. 111-124
Author(s):  
F. E. Tahiri ◽  
K. Chikh ◽  
M. Khafallah

This paper proposes optimal control strategies of a standalone Hybrid Power System (HPS) to supply sustainable and optimal energy to an isolated site with improved quality of electrical energy. A topology of Isolated Hybrid Power System (IHPS) is proposed, consists of: a Photovoltaic System (PVS), a Wind Energy Conversion System (WECS), electronic power devices controlled to maximize energy production from renewable sources and to maintain the constant DC-link voltage, a Battery Energy Storage System (BESS), Diesel Generator (DG), and a Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) located at the load-side end. In addition, a novel control strategy has been proposed, in this work, to maximize the power from the PVS. This presented strategy, based on the combination between Perturb and Observe (P&O) algorithm and the Fuzzy PI Controller (FPIC), presents a good performance, especially in the dynamic state compared to the classical algorithm P&O. A supervisory control algorithm has been elaborated to manage the energy flows between the devices of the hybrid system to make the decision of the optimal operating mode in order to ensure a continuous supply of the load with minimum usage of batteries and DG. The simulation results developed in the Matlab/Simulink environment are applied to show the efficiency and performance of the proposed control strategies in terms of power optimization and energy management. Doi: 10.28991/esj-2021-01262 Full Text: PDF


2018 ◽  
Vol 10 (11) ◽  
pp. 4045 ◽  
Author(s):  
Tae Jung ◽  
Donghun Kim ◽  
Jongwoo Moon ◽  
SeoKyung Lim

The Maldives, one of the Small Island Developing States (SIDS) with great solar potential, is keen to promote renewable energy systems to reduce its heavy reliance on imported diesel for power generation. However, adopting renewable energy systems is still burdensome for the Maldives not only because of its high initial costs and insufficient financial resources but also because of a lack of understanding about whether the deployment of a renewable system is economically feasible. Therefore, the concept of grid parity is explored as an important concept in this paper to examine the possible timeframe for reaching it. A distinctive feature of the paper is that the paper used actual cost and technical information to analyze the levelized cost of energy (LCOEs) of the independent renewable system in a remote island and examined its timeframe for reaching the grid parity condition. Based on economic and technical information from a project for replacing existing diesel generator to photovoltaic (PV) with energy storage system (ESS) in Kuda Bandos Island in the Maldives, the paper considers three different system configurations and evaluates which configuration could result in the most optimal off-grid energy systems in this remote island. With sensitivity analysis on various uncertainties, the paper shows the range of the levelized costs of energy and the periods required for reaching grid parity for deploying solar photovoltaics and ESSs in Kuda Bandos Island, Maldives. The result indicates that the photovoltaic system is an economically feasible option for the resort, and that grid parity can be reached within the project lifetime. However, the result shows that the use of advanced ESSs is still an expensive option and would not be economically reasonable.


Author(s):  
Cyprian Oton ◽  
M. Tariq Iqbal

This work considers the dynamic modeling and simulation of a DC hybrid power system for a rural base transceiver station in Nigeria currently being powered by an AC diesel generator (DG). The transient behaviour of the system is studied under varying solar irradiation to ascertain the stability of the power supplied to the sensitive telecommunication equipment. Each component of the system is designed and simulated in a MATLAB/Simulink environment and connected to form the whole system. A permanent Magnet DC diesel generator is used as back-up power for the system. A detailed presentation of the solar array, buck converter, battery storage system, battery controller, diesel generator and the load are presented in this paper. The result shows a stable power output to the load at rated voltage of 48 V.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2602 ◽  
Author(s):  
Aritra Ghosh

To combat global climate change moving towards sustainable, mobility is one of the most holistic approaches. Hence, decarbonization of the transport sector by employing electric vehicles (EVs) is currently an environmentally benign and efficient solution. The EV includes the hybrid EV (HEV), the plug-in hybrid EV (PHEV), and the battery EV (BEV). A storage system, a charging station, and power electronics are the essential components of EVs. The EV charging station is primarily powered from the grid which can be replaced by a solar photovoltaic system. Wide uptake of EVs is possible by improving the technologies, and also with support from the government. However, greenhouse gas emission (GHG) saving potential of the EV is debatable when the required power to charge the EV comes from traditional fossil fuel sources.


Author(s):  
A. Razi ◽  
M. Nabil Hidayat ◽  
M. N. Seroji

This paper discussed the topology development of a single-stage microinverter in grid-connected PV system. In general, the microinverter topologies can be categorized into four type of topologies:          1) Flyback inverter, 2) Double-boost inverter, 3) Derived zeta-cuk configuration and 4) Buck-boost inverter. Flyback configuration is widely used for single-stage microinverter which offers protection between solar panel and utility grid. However due to the bulkiness of the transformer, new arrangement circuit employ the Half-Bridge topology with film capacitor and microcontroller provide a good room for research and future developments to obtain greater efficiency and compact design of single-stage microinverter grid-connected PV system. Plus, there are several characteristics need to be taken care for future development of the microinverter technology.


2007 ◽  
Vol 10 (3) ◽  
pp. E231-E234 ◽  
Author(s):  
Balram Airan ◽  
Sachin Talwar ◽  
Shiv Choudhary ◽  
Akshay Bisoi ◽  
Ujjwal Chowdhury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document