scholarly journals 3D Synaptic Organization of the Rat CA1 and Alterations Induced by Cocaine Self-Administration

2020 ◽  
Author(s):  
L Blazquez-Llorca ◽  
M Miguéns ◽  
M Montero-Crespo ◽  
A Selvas ◽  
J Gonzalez-Soriano ◽  
...  

Abstract The hippocampus plays a key role in contextual conditioning and has been proposed as an important component of the cocaine addiction brain circuit. To gain knowledge about cocaine-induced alterations in this circuit, we used focused ion beam milling/scanning electron microscopy to reveal and quantify the three-dimensional synaptic organization of the neuropil of the stratum radiatum of the rat CA1, under normal circumstances and after cocaine-self administration (SA). Most synapses are asymmetric (excitatory), macular-shaped, and in contact with dendritic spine heads. After cocaine-SA, the size and the complexity of the shape of both asymmetric and symmetric (inhibitory) synapses increased but no changes were observed in the synaptic density. This work constitutes the first detailed report on the 3D synaptic organization in the stratum radiatum of the CA1 field of cocaine-SA rats. Our data contribute to the elucidation of the normal and altered synaptic organization of the hippocampus, which is crucial for better understanding the neurobiological mechanisms underlying cocaine addiction.

Author(s):  
L. Blazquez-Llorca ◽  
M. Miguéns ◽  
M. Montero-Crespo ◽  
A. Selvas ◽  
J. Gonzalez-Soriano ◽  
...  

ABSTRACTThe hippocampus plays a key role in contextual conditioning and has been proposed as an important component of the cocaine addiction brain circuit. To gain knowledge about cocaine-induced alterations in this circuit, we used Focused Ion Beam milling/Scanning Electron Microscopy (FIB/SEM) to reveal and quantify the 3D synaptic organization of the stratum radiatum of rat CA1, under normal circumstances and after cocaine-self administration (SA). Most synapses are asymmetric (excitatory), macular-shaped, and in contact with spine heads. After cocaine-SA, the size and complexity of both asymmetric and symmetric (inhibitory) synapses increased but no changes were observed in the synaptic density.This work constitutes the first detailed report on the 3D synaptic organization in the stratum radiatum of the CA1 field of cocaine-SA rats. Our data contribute to the elucidation of the normal and altered synaptic organization of the hippocampus, which is crucial for better understanding the neurobiological mechanisms underlying cocaine addiction.


2021 ◽  
Author(s):  
Nicolás Cano-Astorga ◽  
Javier DeFelipe ◽  
Lidia Alonso-Nanclares

AbstractIn the present study we have used Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to perform a study of the synaptic organization of layer III of Brodmann’s area 21 in human. We analyzed the synaptic density, 3D spatial distribution, and type (excitatory/inhibitory), as well as the shape and size of each synaptic junction of 4945 synapses that were fully reconstructed in 3D. Moreover, the postsynaptic targets of 1888 synapses were determined. We also compared several electron microscopy methods and analysis tools to estimate the synaptic density in the same brain tissue. We have shown that FIB/SEM is much more reliable and robust than the majority of the other commonly used EM techniques. The present work constitutes a detailed description of the synaptic organization of cortical layer III. Further studies on the rest of the cortical layers are necessary to better understand the functional organization of this temporal cortical region.


2020 ◽  
Vol 31 (1) ◽  
pp. 410-425 ◽  
Author(s):  
M Domínguez-Álvaro ◽  
M Montero-Crespo ◽  
L Blazquez-Llorca ◽  
J DeFelipe ◽  
L Alonso-Nanclares

Abstract The entorhinal cortex (EC) is a brain region that has been shown to be essential for memory functions and spatial navigation. However, detailed three-dimensional (3D) synaptic morphology analysis and identification of postsynaptic targets at the ultrastructural level have not been performed before in the human EC. In the present study, we used Focused Ion Beam/Scanning Electron Microscopy to perform a 3D analysis of the synapses in the neuropil of medial EC in layers II and III from human brain autopsies. Specifically, we studied synaptic structural parameters of 3561 synapses, which were fully reconstructed in 3D. We analyzed the synaptic density, 3D spatial distribution, and type (excitatory and inhibitory), as well as the shape and size of each synaptic junction. Moreover, the postsynaptic targets of synapses could be clearly determined. The present work constitutes a detailed description of the synaptic organization of the human EC, which is a necessary step to better understand the functional organization of this region in both health and disease.


Author(s):  
Marta Montero-Crespo ◽  
Marta Domínguez-Álvaro ◽  
Patricia Rondón-Carrillo ◽  
Lidia Alonso-Nanclares ◽  
Javier DeFelipe ◽  
...  

AbstractThe hippocampal CA1 field integrates a wide variety of subcortical and cortical inputs, but its synaptic organization in humans is still unknown due to the difficulties involved studying the human brain via electron microscope techniques. However, we have shown that the 3D reconstruction method using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) can be applied to study in detail the synaptic organization of the human brain obtained from autopsies, yielding excellent results. Using this technology, 24,752 synapses were fully reconstructed in CA1, revealing that most of them were excitatory, targeting dendritic spines and displaying a macular shape, regardless of the layer examined. However, remarkable differences were observed between layers. These data constitute the first extensive description of the synaptic organization of the neuropil of the human CA1 region.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Marta Montero-Crespo ◽  
Marta Dominguez-Alvaro ◽  
Patricia Rondon-Carrillo ◽  
Lidia Alonso-Nanclares ◽  
Javier DeFelipe ◽  
...  

The hippocampal CA1 field integrates a wide variety of subcortical and cortical inputs, but its synaptic organization in humans is still unknown due to the difficulties involved studying the human brain via electron microscope techniques. However, we have shown that the 3D reconstruction method using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) can be applied to study in detail the synaptic organization of the human brain obtained from autopsies, yielding excellent results. Using this technology, 24,752 synapses were fully reconstructed in CA1, revealing that most of them were excitatory, targeting dendritic spines and displaying a macular shape, regardless of the layer examined. However, remarkable differences were observed between layers. These data constitute the first extensive description of the synaptic organization of the neuropil of the human CA1 region.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiyu Sun ◽  
Wei Wu ◽  
Limei Tian ◽  
Wei Li ◽  
Fang Zhang ◽  
...  

AbstractNot only does the Dynastes tityus beetle display a reversible color change controlled by differences in humidity, but also, the elytron scale can change color from yellow-green to deep-brown in specified shapes. The results obtained by focused ion beam-scanning electron microscopy (FIB-SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three-dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical reflectance, and the reflective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The reflectance of both yellow-green and deep-brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that influence the process of reversible color change. According to the simulation, the lower reflectance causing the color change to deep-brown results from water infiltration, which increases light absorption. Meanwhile, the waxy layer has no effect on the reflection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey A. Polilov ◽  
Anastasia A. Makarova ◽  
Song Pang ◽  
C. Shan Xu ◽  
Harald Hess

AbstractModern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.


2007 ◽  
Vol 15 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Ben Lich

DualBeam instruments that combine the imaging capability of scanning electron microscopy (SEM) with the cutting and deposition capability of a focused ion beam (FIB) provide biologists with a powerful tool for investigating three-dimensional structure with nanoscale (1 nm-100 nm) resolution. Ever since Van Leeuwenhoek used the first microscope to describe bacteria more than 300 years ago, microscopy has played a central role in scientists' efforts to understand biological systems. Light microscopy is generally limited to a useful resolution of about a micrometer. More recently the use of confocal and electron microscopy has enabled investigations at higher resolution. Used with fluorescent markers, confocal microscopy can detect and localize molecular scale features, but its imaging resolution is still limited. SEM is capable of nanometer resolution, but is limited to the near surface region of the sample.


Sign in / Sign up

Export Citation Format

Share Document