scholarly journals Oscillatory Activity in Human Parietal and Occipital Cortex Shows Hemispheric Lateralization and Memory Effects in a Delayed Double-Step Saccade Task

2006 ◽  
Vol 17 (10) ◽  
pp. 2364-2374 ◽  
Author(s):  
W. P. Medendorp ◽  
G. F. I. Kramer ◽  
O. Jensen ◽  
R. Oostenveld ◽  
J.-M. Schoffelen ◽  
...  
2012 ◽  
Vol 24 (2) ◽  
pp. 521-529 ◽  
Author(s):  
Frank Oppermann ◽  
Uwe Hassler ◽  
Jörg D. Jescheniak ◽  
Thomas Gruber

The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur. The present EEG study aimed at exploring the availability of such relational knowledge in the time course of visual scene processing, using oscillatory evoked gamma-band responses as a neural correlate for a currently activated cortical stimulus representation. Participants decided whether two simultaneously presented objects were conceptually coherent (e.g., mouse–cheese) or not (e.g., crown–mushroom). We obtained increased evoked gamma-band responses for coherent scenes compared with incoherent scenes beginning as early as 70 msec after stimulus onset within a distributed cortical network, including the right temporal, the right frontal, and the bilateral occipital cortex. This finding provides empirical evidence for the functional importance of evoked oscillatory activity in high-level vision beyond the visual cortex and, thus, gives new insights into the functional relevance of neuronal interactions. It also indicates the very early availability of experience-based knowledge that might be regarded as a fundamental mechanism for the rapid extraction of the gist of a scene.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-Jun Lin ◽  
Lavanya Shukla ◽  
Laura Dugué ◽  
Antoni Valero-Cabré ◽  
Marisa Carrasco

AbstractParieto-occipital alpha rhythms (8–12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.


2019 ◽  
Author(s):  
Martin Szinte ◽  
David Aagten-Murphy ◽  
Donatas Jonikaitis ◽  
Luca Wollenberg ◽  
Heiner Deubel

AbstractTo achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.


2017 ◽  
Author(s):  
Marco Fuscà ◽  
Philipp Ruhnau ◽  
Toralf Neuling ◽  
Nathan Weisz

AbstractTranscranial alternating current stimulation (tACS) has been proposed as a tool to draw causal inferences on the role of oscillatory activity in cognitive functioning and has the potential to induce long-term changes in cerebral networks. However, the mechanisms of action of tACS are not yet clear, though previous modeling works have suggested that variability may be mediated by local and network-level brain states. We used magnetoencephalography (MEG) to record brain activity from 17 healthy participants as they kept their eyes open (EO) or closed (EC) while being stimulated either with sham, weak, or strong alpha-tACS using a montage commonly assumed to target occipital areas. We reconstructed the activity of sources in all stimulation conditions by means of beamforming. The analysis of resting-state data revealed an interaction of the external stimulation with the endogenous alpha power difference between EO and EC in the posterior cingulate. This region is remote from occipital cortex, which showed strongest EC vs. EO alpha modulation, thus suggesting state-dependency long-range effects of tACS. In a follow-up analysis of this online-tACS effect, we find evidence that this dependency effect could be mediated by functional network changes: connection strength from the precuneus, a region adjusting for a measure of network integration in the two states (EC vs. EO during no-tACS), was significantly correlated with the state-dependency effect in the posterior cingulate (during tACS). No analogous correlation could be found for alpha power modulations in occipital cortex. Altogether, this is the first strong evidence to illustrate how functional network architectures can shape tACS effects.


2019 ◽  
Author(s):  
Marina Fiene ◽  
Bettina C. Schwab ◽  
Jonas Misselhorn ◽  
Christoph S. Herrmann ◽  
Till R. Schneider ◽  
...  

AbstractBackgroundOscillatory phase has been proposed as a key parameter defining the spatiotemporal structure of neural activity. To enhance our understanding of brain rhythms and improve clinical outcomes in pathological conditions, phase-specific modulation of oscillations by transcranial alternating current stimulation (tACS) emerged as a promising approach. However, the effectiveness of tACS in humans is still critically debated.ObjectiveHere, we investigated the phase-specificity of tACS effects on visually evoked steady state responses (SSRs) in 24 healthy human participants of either sex.MethodsTo this end, we used an intermittent electrical stimulation protocol and assessed the influence of tACS on SSR amplitude in the interval immediately following tACS.ResultsWe observed that the phase shift between flicker and tACS modulates evoked SSR amplitudes. The tACS effect size was dependent on the strength of flicker-evoked oscillatory activity, with larger effects in participants showing weaker locking of neural responses to flicker phase. Neural sources of phase-specific effects were localized in the parieto-occipital cortex within flicker-entrained regions. Importantly, the optimal phase shift between flicker and tACS associated with strongest SSRs was correlated with cortical SSR onset delays over the visual cortex.ConclusionsOverall, our data provide electrophysiological evidence for phase-specific modulations of oscillatory activity by tACS in humans. As the optimal timing of tACS application was dependent on neural conduction times as measured by SSR onset delays, data suggest that the interaction between tACS effect and SSR was cortical in nature. These findings corroborate the physiological efficacy of tACS and highlight its potential for controlled modulations of brain signals.


2017 ◽  
Vol 32 (6) ◽  
pp. 1347-1354
Author(s):  
Zhenlan Jin ◽  
Shulin Yue ◽  
Junjun Zhang ◽  
Ling Li

2016 ◽  
Vol 16 (14) ◽  
pp. 12 ◽  
Author(s):  
Anouk J. de Brouwer ◽  
W. Pieter Medendorp ◽  
Jeroen B. J. Smeets
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Szinte ◽  
David Aagten-Murphy ◽  
Donatas Jonikaitis ◽  
Luca Wollenberg ◽  
Heiner Deubel

AbstractTo achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.


2020 ◽  
Vol 10 (10) ◽  
pp. 662
Author(s):  
Luca Rinaldi ◽  
Andrea Ciricugno ◽  
Lotfi B. Merabet ◽  
Tomaso Vecchi ◽  
Zaira Cattaneo

The human cerebral cortex is asymmetrically organized with hemispheric lateralization pervading nearly all neural systems of the brain. Whether the lack of normal visual development affects hemispheric specialization subserving the deployment of visuospatial attention asymmetries is controversial. In principle, indeed, the lack of early visual experience may affect the lateralization of spatial functions, and the blind may rely on a different sensory input compared to the sighted. In this review article, we thus present a current state-of-the-art synthesis of empirical evidence concerning the effects of visual deprivation on the lateralization of various spatial processes (i.e., including line bisection, mirror symmetry, and localization tasks). Overall, the evidence reviewed indicates that spatial processes are supported by a right hemispheric network in the blind, hence, analogously to the sighted. Such a right-hemisphere dominance, however, seems more accentuated in the blind as compared to the sighted as indexed by the greater leftward bias shown in different spatial tasks. This is possibly the result of the more pronounced involvement of the right parietal cortex during spatial tasks in blind individuals compared to the sighted, as well as of the additional recruitment of the right occipital cortex, which would reflect the cross-modal plastic phenomena that largely characterize the blind brain.


Sign in / Sign up

Export Citation Format

Share Document