Pore Size Distribution off "in situ" Coated Silica Gels Determined by Exclusion Chromatography

1980 ◽  
Vol 18 (5) ◽  
pp. 207-216 ◽  
Author(s):  
R. Nikolov ◽  
W. Werner ◽  
I. Halasz
2016 ◽  
Vol 69 (2) ◽  
pp. 183 ◽  
Author(s):  
Juanrong Chen ◽  
Fengxian Qiu ◽  
Ying Zhang ◽  
Shunsheng Cao

A new trend in supercapacitor research has focussed on the construction of inexpensive electrode materials with high capacitor performances. In this study, we demonstrate the successful preparation of carbon-doped hollow titania spheres. The as-prepared titania spheres not only exhibit an advantage over existing methods because they are created in situ by directly carbonizing cationic polystyrene templates without the addition of carbon precursors, but also feature a narrow pore size distribution and a tuneable shell architecture. When the materials were applied as supercapacitor anodes, the electrochemical results reveal the superior performances of the supercapacitors over that of commercial P25. The higher performances were attributed to carbon doping. Thus, the reported C-doped hollow titania shows more potential as electrode materials for high-performance supercapacitors.


2014 ◽  
Vol 118 (16) ◽  
pp. 8474-8480 ◽  
Author(s):  
Hai-Jing Wang ◽  
Alfred Kleinhammes ◽  
Thomas P. McNicholas ◽  
Jie Liu ◽  
Yue Wu

2019 ◽  
Vol 95 ◽  
pp. 363-370 ◽  
Author(s):  
Lenka Novotna ◽  
Lukas Kucera ◽  
Ales Hampl ◽  
Daniel Drdlik ◽  
Jaroslav Cihlar ◽  
...  

1990 ◽  
Vol 180 ◽  
Author(s):  
Douglas M. Smith ◽  
Pamela J. Davis ◽  
C. Jeffrey Brinker

ABSTRACTThe use of NMR relaxation measurements for the in-situ study of pore structure evolution during gel aging and drying is illustrated. The change in the pore size distribution and surface area of both wet and dried gels is examined as a function of aging conditions including temporal aging, thermal aging, changing pH, and changing pore fluid. The effect of pore fluid pH on dissolution/reprecipitation in ordered packings of monodisperse silica spheres is also examined as a model system for particulate gels. As expected, the pore size distribution narrows with increasing time of treatment in high pH pore fluids. Interpretation of high pH results for the wet state is complicated by a microporous layer which forms on colloidal silica resulting in significantly larger wet surface area as compared to the final dried material. Narrowing of the pore size distribution, which is of interest for maximizing drying rates, is maximized in the least time by using either high pH or repeated ethanol washes for the base-catalyzed gel (B2) used.


Sign in / Sign up

Export Citation Format

Share Document