AQbD-Oriented UHPLC/MS/MS Method Development for Glycopeptides Assessment in Pharmaceutical Forms

Author(s):  
A Stajić ◽  
J Janković-Maksić ◽  
B Jančić-Stojanović ◽  
M Medenica

Abstract Vancomycin and teicoplanin are glycopeptide antibacterials that inhibit the bacteria cell wall synthesis showing activity against gram-positive bacteria. Development of the sensitive method is of great importance for quality control of these drugs that are fermentation products. Modification of the fermentation conditions could cause the differences in the relative amount of the total substance or component, as it is the case with teicoplanin. The main objective of this study was development of the sensitive and effective ultra high performance liquid chromatography - tandem mass sprectrometry (UHPLC-MS/MS) method for simultaneous quantification of vancomycin, all six subcomponents of teicoplanin, and its pharmacopoeial impurity A in pharmaceutical forms. The scientific-based Quality by Design approach was implemented in the MS and UHPLC method development. Detection and quantification of analytes were carried out in positive electrospray ion mode by multiple reaction monitoring. Capillary voltage, cone voltage and collision energy were optimized by implementing experimental design methodology and optimal values for each fragment ion were obtained by performing experiments according to ‘Rechtschaffen’ design matrix. An ACQUITY CSH Phenyl-hexyl (2.1 × 50 mm, particle size 1.7 μm) column was chosen for the separation under the gradient elution mode with the mobile phase consisted of 0.1% formic acid in water (mobile phase A) and acetonitrile (mobile phase B). Optimal gradient elution parameters were achieved by applying ‘Rechtschaffen’ design too. Method operable design regions were constructed for investigated MS and chromatographic parameters. The method was fully validated, and its applicability was confirmed throughout the ability to follow the behavior of vancomycin and teicoplanin under stress conditions.

2021 ◽  
Vol 33 (5) ◽  
pp. 1165-1168
Author(s):  
C. Purushotham Reddy ◽  
G. Venkateswara Rao ◽  
K. Ramakrishna ◽  
K.M.V. Narayana Rao

A sensitive and robust high performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of potential genotoxic impurity (PGI), 2-(chloromethyl)-3-methyl-4-(2,2,2-trifluoroethoxy)-pyridine hydrochloride (PyCl) in lansoprazole as per ICH Q2 guideline. In this method, PyCl and lansoprazole were well-separated from each other on Acquity UPLC BEH-C18 column (50 × 4.6 mm × 1.7 μ) in a gradient elution mode with the mobile phase consisting of 0.1% formic acid in water (mobile phase-A) and acetonitrile (mobile phase-B) at a flow rate of 0.4 mL/min. For the quantitation of Py-Cl, selective ion monitoring (SIM) mode was used with m/z 240 ion in LC-MS method. The validated method was found to be precise, accurate and linear from the range of LOQ level to 150% with respect to sample concentration and the correlation co-efficient was found to be 0.998. Limit of detection (LOD) and limit of quantifications (LOQ) were found to be 0.000012 and 0.000004 mg/mL, respectively. The validated method was found to be sensitive and the recoveries were found to be well within the range from 83.4% to 95.9% for Py-Cl. Further, the solution stability was also established as the same were found to be stable upto 24 h.


2018 ◽  
Vol 7 (4) ◽  
pp. 450-457
Author(s):  
Marjan Piponski ◽  
Tanja Bakovska Stoimenova ◽  
Magdalena Piponska ◽  
Gordana Trendovska Serafimovska

New, fast, simple and mild conditioned High Performance Liquid Chromatography (HPLC) method for determination of atorvastatin and its 7 main specified impurities, as well as unspecified impurities that might possibly appear, was developed. Chromatographic runs last between 25 and 40 minutes, with simple stepwise gradient elution. The main accent in our method development strategy was focused on mobile phase, composed of simple binary system composed of phosphate buffer and acetonitrile, at pH 4.1, without use of tetrahydrofuran, ion-pair reagents, trifluoroacetic acid and other modifiers with high Ultraviolet (UV) cut-off like absorptive acetate or formiate buffers or amines. With our concept of mobile phase, different columns from myriad were tested, with different efficiency, dimensions and properties, which resulted in different separation efficiency and run time. The best results, concerning essential critical peak resolution, run time length including column preparation and equilibration and column backpressure, were achieved with: YMC C18 Triart 150mm x 4.6mm, 3µm (YMC America, Inc.), afterwards with Nucleodur 100-3-C18ec 250mm x 4.6mm, 3µm (Macherey-Nagel GmbH & Co., Germany), Waters Symmetry C18 250mm x 4.6mm, 5µm (Waters, USA) and Superspher C18e 125mm x 4mm, 4µm (Merck, Darmstadt, Germany). All this columns achieve excellent results regarding obligated critical resolution between atorvastatin impurity B and atorvastatin (according to European Pharmacopoeia),1 or in some cases between atorvastatin impurity B and atorvastatin impurity C, to be minimum about 1.5, in both cases.


2021 ◽  
Vol 1 (1) ◽  
pp. 75-83
Author(s):  
Benmalek BOULESNAM ◽  
Fahima HAMI ◽  
Djalal TRACHE ◽  
Toudert AHMED ZAID

The growing threat of terrorism in many parts of the world has called for the urgent need to find rapid and reliable means of analyzing explosives. This is in view to help forensic scientists to identify different swabs from post-blast debris. The present study aims to achieve an efficient separation and identification of a mixture of sixteen explosive compounds (including nitroaromatics, nitramines, and nitrate esters) by high performance liquid chromatography using a diode array detection (HPLC/DAD) and an Agilent Poroshell 120 EC-120 C18 column at two wavelengths (235 and 214 nm). Relevant chromatographic parameters such as capacity factors, resolution, selectivity and number of theoretical plates have been optimized in order to achieve the best separation of the different components. In this respect, the effects of various parameters such as gradient time, column temperature, flow rate of mobile phase and initial percentage organic mobile phase on the separation of these compounds were investigated. It was revealed that the method allowed a fairly acceptable separation of all the compounds in less than 15 minutes except for two isomers, namely 4-A-2,6-DNT, 2-A-4,6-DNT and 2,6- DNT which could not be resolved by the used C18 column. This shortcoming notwithstanding, the developed method produced satisfactory results and demonstrated sensitive and robust separation, furthermore indicating that the HPLC developed method can be both fast and efficient for the analysis of complex mixtures of explosive compounds.


2020 ◽  
Vol 17 (1) ◽  
pp. 47-56
Author(s):  
Shun Liu ◽  
Xun Wang ◽  
Kaiping Zou ◽  
Wei Liu ◽  
Cunyu Li ◽  
...  

Background: Zishen Tongguan (ZSTG) capsules were prepared at the Affiliated Hospital of Nanjing University of Chinese Medicine and have been proven to be clinically effective for treating pyelonephritis and benign prostatic hyperplasia. However, the quality standards are not ideal; a comprehensive study of the “quality markers” (Q-markers), the chemicals inherent in traditional Chinese medicine and its preparations, has not been carried out. Experimental Methods: In this paper, a sensitive and specific ultra-high-performance liquid chromatographictandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of eight potential Q-markers of ZSTG, including timosaponin A3, berberine, jatrorrhizine, phellodendrine, palmatine, mangiferin, neomangiferin, and timosaponin BII. A Kromasil 100-3.5 C18 column was used with a mobile phase of 0.2% formic acid with acetonitrile, and gradient elution at a flow rate of 0.2 mL/min was achieved in 13 minutes and used for separation. Detection was performed in positive/negative mode with multiple reaction monitoring (MRM). Results: The analytical method was validated in terms of the sensitivity, linearity, accuracy, precision, repeatability, stability and recovery. The method established here was successfully applied to study the potential Q-markers in 8 batches of commercial samples, which demonstrated its use in improving the quality control of ZSTG. Conclusion: The developed method had high repeatability and accuracy and was suitable for the simultaneous analysis of multiple Q-markers, which may provide a new basis for the comprehensive assessment and overall quality control of ZSTG.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


2001 ◽  
Vol 73 (9) ◽  
pp. 1465-1475 ◽  
Author(s):  
Roman Kaliszan ◽  
Piotr Haber ◽  
Tomasz Baczek ◽  
Danuta Siluk

The linear-solvent strength (LSS) model of gradient elution in high-performance liquid chromatography (HPLC) has been demonstrated to provide parameters of lipophilicity and acidity of analytes. pKa and log kw values are determined in three gradient runs. The first two experiments use an aqueous buffered eluent with a wide-range organic modifier gradient at pH of buffer, providing suppression of ionization of the analyte. That experiment allows an estimate of contents of the organic modifier in the mobile phase (%B), producing requested retention coefficient, k, for the nonionized form of the analyte. The next experiment is carried out with the latter %B and a pH-gradient of the aqueous component of the eluent that is sufficient to overlap possible pKa value of the analyte. The initial pH of the buffer used to make the mobile phase is selected to insure that the analyte is in nonionized form. The resulting retention time allows an estimate of pKa in a solvent of the given %B.The log kw parameter obtained correlated well with the corresponding value obtained by the standard procedure of extrapolation of retention data determined in a series of isocratic measurements. The correlation between log kw and the reference parameter of lipophilicity, log P, was very good for a series of test analytes. The values of pKa were found to correlate with the literature pKa data determined in water for a set of aniline derivatives studied.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ravi Kumar Konda ◽  
B. R. Challa ◽  
Babu Rao Chandu ◽  
Kothapalli B. Chandrasekhar

A simple, sensitive, and rapid HPLC-MS/MS method was developed and validated for quantitative estimation of memantine in human plasma. Chromatography was performed on Zorbax SB-C18(4.6×75 mm, 3.5 μm) column. Memantine (ME) and internal standard Memantine-d6(MED6) were extracted by using liquid-liquid extraction and analyzed by LC-ESI-MS/MS using multiple-reaction monitoring (MRM) mode. The assay exhibited a linear dynamic range of 50.00–50000.00 pg/ml for ME in human plasma. This method demonstrated an intra- and interday precision within the range of 2.1–3.7 and 1.4–7.8%, respectively. Further intra- and interday accuracy was within the range of 95.6–99.8 and 95.7–99.1% correspondingly. The mean recovery of ME and MED6 was86.07±6.87and80.31±5.70%, respectively. The described method was successfully employed in bioequivalence study of ME in Indian male healthy human volunteers under fasting conditions.


Sign in / Sign up

Export Citation Format

Share Document