nitrate esters
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 1 (1) ◽  
pp. 75-83
Author(s):  
Benmalek BOULESNAM ◽  
Fahima HAMI ◽  
Djalal TRACHE ◽  
Toudert AHMED ZAID

The growing threat of terrorism in many parts of the world has called for the urgent need to find rapid and reliable means of analyzing explosives. This is in view to help forensic scientists to identify different swabs from post-blast debris. The present study aims to achieve an efficient separation and identification of a mixture of sixteen explosive compounds (including nitroaromatics, nitramines, and nitrate esters) by high performance liquid chromatography using a diode array detection (HPLC/DAD) and an Agilent Poroshell 120 EC-120 C18 column at two wavelengths (235 and 214 nm). Relevant chromatographic parameters such as capacity factors, resolution, selectivity and number of theoretical plates have been optimized in order to achieve the best separation of the different components. In this respect, the effects of various parameters such as gradient time, column temperature, flow rate of mobile phase and initial percentage organic mobile phase on the separation of these compounds were investigated. It was revealed that the method allowed a fairly acceptable separation of all the compounds in less than 15 minutes except for two isomers, namely 4-A-2,6-DNT, 2-A-4,6-DNT and 2,6- DNT which could not be resolved by the used C18 column. This shortcoming notwithstanding, the developed method produced satisfactory results and demonstrated sensitive and robust separation, furthermore indicating that the HPLC developed method can be both fast and efficient for the analysis of complex mixtures of explosive compounds.


2020 ◽  
Vol 17 (3) ◽  
pp. 384-407
Author(s):  
Amit Kumar ◽  
Prakash Chavan ◽  
Vaibhav Sadavarte ◽  
Shrikant Pande ◽  
Debdas Bhowmik ◽  
...  
Keyword(s):  

2020 ◽  
Vol 20 (7) ◽  
pp. 4241-4254
Author(s):  
Elena Ali McKnight ◽  
Nicole P. Kretekos ◽  
Demi Owusu ◽  
Rebecca Lyn LaLonde

Abstract. Organic nitrate esters are key products of terpene oxidation in the atmosphere. We report here the preparation and purification of nine nitrate esters derived from (+)-3-carene, limonene, α-pinene, β-pinene and perillic alcohol. The availability of these compounds will enable detailed investigations into the structure–reactivity relationships of aerosol formation and processing and will allow individual investigations into aqueous-phase reactions of organic nitrate esters.


2020 ◽  
Vol 70 (2) ◽  
pp. 159-165
Author(s):  
Ehtasimul Hoque ◽  
Chandra Shekhar Pant ◽  
Sushanta Das

   Friction sensitivity of composite propellants and their ingredients is of significant interest to mitigate the risk associated with the accidental initiation while processing, handling, and transportation. In this work, attempts were made to examine the friction sensitivity of passive binder: Hydroxy Terminated Polybutadiene/Aluminium/Ammonium Perchlorate and active binder: (Polymer + Nitrate Esters)/Ammonium Perchlorate/Aluminium/Nitramine based composite propellants by using BAM Friction Apparatus. As per the recommendation of NATO standard STANAG–4487, the friction sensitivity was assessed by two methods: Limiting Frictional load and Frictional load for 50% probability of initiation (F50). The test results showed that the active binder based formulations were more vulnerable to frictional load as compared to the formulations with passive binders. Examination of a comprehensive set of propellant compositions revealed that the particle size distribution of Ammonium Perchlorate and burn rate catalysts were the most influential factors in dictating the friction sensitivity for HTPB/Al/AP composite propellants. For active binder/AP/Al/Nitramine composite propellants, the formulation with RDX was found more friction sensitive with a sensitivity value of 44 N as compared to its HMX analog (61 N). The correlation studies of friction sensitivity, burning rate, and thermal decomposition characteristics of HTPB/Al/AP composite propellants is described.


2020 ◽  
Vol 26 (4) ◽  
Author(s):  
Tomas L. Jensen ◽  
John F. Moxnes ◽  
Erik Unneberg ◽  
Dennis Christensen

Abstract In order to predict the impact sensitivity of high explosives, we designed and evaluated several models based on the trigger linkage hypothesis and the Arrhenius equation. To this effect, we calculated the heat of detonation, temperature of detonation, and bond dissociation energy for 70 energetic molecules. The bond dissociation energy divided by the temperature of detonation proved to be a good predictor of the impact sensitivity of nitroaromatics, with a coefficient of determination (R2) of 0.81. A separate Bayesian analysis gave similar results, taking model complexity into account. For nitramines, there was no relationship between the impact sensitivity and the bond dissociation energy. None of the models studied gave good predictions for the impact sensitivity of liquid nitrate esters. For solid nitrate esters, the bond dissociation energy divided by the temperature of detonation showed promising results (R2 = 0.85), but since this regression was based on only a few data points, it was discredited when model complexity was accounted for by our Bayesian analysis. Since the temperature of detonation correlated with the impact sensitivity for nitroaromatics, nitramines, and nitrate esters, we consider it to be one of the leading predictive factors of impact sensitivity for energetic materials.


2019 ◽  
Author(s):  
Elena Ali McKnight ◽  
Nicole P. Kretekos ◽  
Demi Owusu ◽  
Rebecca Lyn LaLonde

Abstract. Organic nitrate esters are key products of terpene oxidation in the atmosphere. We report here the preparation and purification of nine nitrate esters derived from (+)-(3)-carene, limonene, α-pinene, β-pinene and perillic alcohol. The availability of these compounds will enable detailed investigations into the structure reactivity relationships of aerosol formation and processing and will allow individual investigations into aqueous phase reactions of organic nitrate esters.


Sign in / Sign up

Export Citation Format

Share Document