A Sensitive LC–MS/MS Method for the Determination of Afatinib in Human Plasma and Its Application to a Bioequivalence Study

Author(s):  
Xi Luo ◽  
Xiu Jin Zhang ◽  
Wen Ling Zhu ◽  
Jin Ling Yi ◽  
Wen Gang Xiong ◽  
...  

Abstract A high performance liquid chromatography–tandem mass spectrometry assay for the determination of afatinib (AFT) in human plasma was established. A simple sample preparation of protein precipitation was used and separation was achieved on a C18 column by the gradient mixture of mobile Phase A of water (containing 0.1% ammonia) and the mobile Phase B of acetonitrile and water (V:V = 95:5, containing 0.2% ammonia). The multiple reaction monitoring mode was used to monitor the precursor-to-production transitions of m/z 486.2 → m/z 371.4 for AFT and m/z 492.2 → m/z 371.3 for AFT-d6 (internal standard) at positive ionization mode. The calibration curve ranged from 0.100 to 25.0 ng·mL−1 and the correlation coefficient was greater than 0.99. The intra- and inter-batch precision was less than or equal to 10.0%. Accuracy determined at four concentrations was in the range of 92.3–103.3%. In summary, our method was sensitive, simple and reliable for the quantification of AFT and was successfully applied to a bioequivalence study.

Author(s):  
Revathi Naga Lakshmi Ponnuri ◽  
Prahlad Pragallapati ◽  
Ravindra N ◽  
Venkata Basaveswara Rao Mandava

  Objective: The main objective of the work was to develop a straightforward, fast and selective liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay for determination of pioglitazone (PG), keto pioglitazone (KPG), and hydroxy pioglitazone (HPG) in human plasma and to validate as per recent guidelines.Methods: Analyte and the internal standard (IS) were extracted from plasma through liquid-liquid extraction and chromatographed on a Xterra RP18, 100×4.6, 5 μ column using methanol: acetonitrile mixture and 10 mM Ammonium formate buffer (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. The API-3200 Q Trap LC-MS/MS instrument in multiple reaction monitoring mode was used for detection. Diphenhydramine was utilized as IS.Results: The linearity was established in the concentration range of 20.15-1007.58 ng/mL for PG, 20.35-1017.58 ng/mL for KPG, and 19.68-491.22 ng/mL for HPG in human plasma. All the validation parameters were well within the acceptance limits.Conclusion: A new simple LC-MS/MS method was developed for the determination of PG, KPG, and HPG in human plasma. This method can be easily applied for the estimation of pharmacokinetic parameters of PG, KPG, and HPG.


2019 ◽  
Vol 57 (8) ◽  
pp. 751-757
Author(s):  
Jiake He ◽  
Ning Li ◽  
Jiaqiu Xu ◽  
Jing Zhu ◽  
Yang Yu ◽  
...  

Abstract A simple, sensitive, specific, accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of chlorzoxazone in human plasma was developed and validated to evaluate the pharmacokinetic characteristics of chlorzoxazone test or reference formulation. Sample preparation was achieved by one step protein precipitation and dilution with acetontrile. The chromatographic separation was performed at 40°C with a gradient mobile phase (0.3 mL/min) and a Shimadzu VP-ODS C18 analytical column (column size: 150 × 2.0 mm). TSQ quantum access triple-quadrapole MS/MS detection was operated in a negative mode by multiple reaction monitoring. Ion transitions at m/z 168.0→132.1 for chlorzoxazone and m/z 451.3→379.3 for repaglinide (internal standard) were used for the LC-MS/MS analysis. The calibration was linear (r ≥ 0.995) over the tested concentration range of 0.2–20 μg/mL for chlorzoxazone in plasma. Precision, accuracy, recovery, matrix effect and stability for chlorzoxazone were evaluated and were excellent within the range of tested concentrations. This method was successfully applied to a bioequivalence study in 20 healthy Chinese volunteers. This method could also contribute to the personalized medication and therapeutic drug monitoring of chlorzoxazone.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ravi Kumar Konda ◽  
B. R. Challa ◽  
Babu Rao Chandu ◽  
Kothapalli B. Chandrasekhar

A simple, sensitive, and rapid HPLC-MS/MS method was developed and validated for quantitative estimation of memantine in human plasma. Chromatography was performed on Zorbax SB-C18(4.6×75 mm, 3.5 μm) column. Memantine (ME) and internal standard Memantine-d6(MED6) were extracted by using liquid-liquid extraction and analyzed by LC-ESI-MS/MS using multiple-reaction monitoring (MRM) mode. The assay exhibited a linear dynamic range of 50.00–50000.00 pg/ml for ME in human plasma. This method demonstrated an intra- and interday precision within the range of 2.1–3.7 and 1.4–7.8%, respectively. Further intra- and interday accuracy was within the range of 95.6–99.8 and 95.7–99.1% correspondingly. The mean recovery of ME and MED6 was86.07±6.87and80.31±5.70%, respectively. The described method was successfully employed in bioequivalence study of ME in Indian male healthy human volunteers under fasting conditions.


Author(s):  
Xiaorong Wu ◽  
Yankai Wang ◽  
Binbin Liang ◽  
Honghai Wu ◽  
Liying Wu ◽  
...  

AbstractAn ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS) method was developed to determine the fenofibric acid (FA) in human plasma and applied to a pharmacokinetic study of fenofibrate tablet (Lipanthyl® supra, 160 mg) on Chinese subjects which had not been reported. Bezafibrate was used as an internal standard (IS), and the plasma samples were precipitated by methanol. Multiple reaction monitoring (MRM) mode was used to quantitatively analyzed FA m/z 317.2 → 230.7 and the IS m/z 360.0 → 274.0 in the electrospray ionization (ESI) negative interface. The calibration curves were linear over the range of 50–30,000  ng/mL (r2  ≥  0.996). The intra-day and inter-day precision (coefficient of variation, CV%) was less than 2.7 and 2.5%, respectively. The accuracy (relative error, RE%) ranged from −4.5 to 6.9%. The average recovery was higher than 86.2%, and the matrix effect was between 95.32 and 110.55%. The simple, rapid, and selectivity method was successfully applied to the pharmacokinetic study of fenofibrate tablets on Chinese subjects.


Author(s):  
Yufeng Ni ◽  
Yujia Zhang ◽  
Chong Zou ◽  
Li Ding

A rapid and reproducible liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine sacubitril, valsartan and a metabolite of sacubitril (LBQ657) in human plasma using sacubitril-d4 and valsartan-d3 as the internal standards. Following protein precipitation, the analytes were operated on an Ultimate® XB-C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a gradient elution with acetonitrile, and 5 mM ammonium acetate and 0.1% formic acid in water as the mobile phase. The detection was performed on a Triple Quad™ 4000 mass spectrometer coupled with an electrospray ionization source (ESI) under positive-ion multiple reaction monitoring mode. The linearities are 2.00-4000, 5.00-10000 and 5.00-10000 ng mL-1 for sacubitril, valsartan and LBQ657, respectively. The accuracy and precision of intra- and inter-day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. The suitability of the method was successfully demonstrated in terms of the quantification of sacubitril, valsartan and LBQ657 in plasma samples collected from healthy Chinese volunteers in a clinical trial.


Bioanalysis ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 1495-1508
Author(s):  
Rajesh Desai ◽  
Brad Roadcap ◽  
Dina Goykhman ◽  
Eric Woolf

Aim: A method to quantitate doravirine (MK-1439) in human plasma has been developed to support human clinical trials designed to evaluate the safety, pharmacokinetics and efficacy of the compound. Methodology & results: The analyte was extracted using liquid–liquid extraction, separated on a reverse phase HPLC column, and detected on an API-4000 mass spectrometer using a Turbo-Ion spray source in positive ionization mode coupled with multiple reaction monitoring mode was used for quantification. The dynamic range for the assay was 0.02–10 ng/ml using 100 μl of human plasma. Conclusion: The assay was found to be sensitive, selective and reproducible and applied to support the doravirine clinical development program.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (06) ◽  
pp. 32-38
Author(s):  
H. Potluri ◽  

A specific and sensitive method of liquid chromatography–tandem mass spectrometry was demonstrated for the experimental determination of venetoclax in human plasma utilising venetoclax-D8 as an internal standard. The column Xbridge C18, 50 × 4.6mm, 5 µm was used for attaining chromatographic separation by utilising 10mM ammonium formate and methanol as isocratic mobile phase in the composition ratio of 20:80 (V/V). The flow-rate selected was 0.7ml/min. Venetoclax and venetoclax-D8 are identified in multiple reaction monitoring (MRM) positive mode with proton adducts at m/z 869.53 →553.21 and m/z 877.14 → 553.23, respectively. For the successful extraction of drug as well as internal standard, liquid-liquid extraction technique was efficiently utilised. The developed technique was established in a linear concentration range of 5.0-5000.0 pg/ml along with correlation coefficient (r2) of 0.9994. Intra and inter-day precisions were found to be 0.7 to 1.90% and 0.7 to 2.0 % for venetoclax and venetoclax-D8, respectively. Accuracy was found to be within 98.6 to 101.99% and 99.17 to 101.14 % for venetoclax and venetoclax-D8, respectively. It was observed that throughout the bench top studies, post-operative stability studies and freeze-thawing cycles, venetoclax retained stability.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qiang Wang ◽  
Xu-Feng Wang ◽  
Yong-Yuan Jiang ◽  
Zhi-Guang Li ◽  
Nan Cai ◽  
...  

AbstractWe developed a significantly improved ultra-high performance liquid chromatography-tandem mass spectrometry method for determination of 5-nitro-2-furaldehyde (NF) as a surrogate using a novel internal standard for the detection of nitrofurazone. We used 2,4-dinitrophenylhydrazine derivatization and furfural as the internal standard. Derivatization was easily performed in HCl using ultrasonic manipulation for 5 min followed by liquid extraction using ethyl acetate. The samples were concentrated and purified using reverse phase and alumina cartridges in tandem. The derivatives were separated using a linear gradient elution on a C18 column with methanol and water as the mobile phase in negative ionization mode and multiple reaction monitoring. Under the optimized conditions, the calibration curves were linear from 0.2 to 20 μg/L with correlation coefficients >0.999. Mean recoveries were 80.8 to 104.4% with the intra- and inter-day relative standard deviations <15% at spiking levels of 0.1 to 10 μg/kg. The limits of detection and quantification were 0.05 and 0.1 μg/kg, respectively. This method is a robust tool for the identification and quantitative determination of NF in shrimp samples.


2007 ◽  
Vol 90 (4) ◽  
pp. 971-976
Author(s):  
Ekram M Hassan ◽  
Azza A Gazy ◽  
Mohamed H Abdel-Hay ◽  
Tarek S Belal

Abstract A simple and rapid high-performance liquid chromatographic method for the determination of proquazone (PQZ) and its major metabolite, m-hydroxyproquazone, in spiked human plasma and urine was developed. Plasma samples were purified using acetonitrile as a protein precipitant, while urine samples were diluted only with the mobile phase and filtered prior to injection. Samples containing the parent compounds and glafenine (internal standard) were eluted from a reversed-phase C8 column using acetonitrile-0.025 M sodium acetate (60 + 40) adjusted to pH 5 as the mobile phase and detected at 234 nm. Peak area ratios of the analytes versus internal standard were used for calibration. The mean recoveries from plasma and urine samples spiked with PQZ and its m-hydroxy metabolite ranged from 97.87 to 103.88%. The relative standard deviation for the within- and between-day analyses were &lt;4%. The proposed method was applied for the assay of PQZ in laboratory-made tablets.


2020 ◽  
Vol 11 (3) ◽  
pp. 3846-3849
Author(s):  
Ashok P ◽  
Narenderan S T ◽  
Meyyanathan S N ◽  
Babu B ◽  
Jawahar N

The present study was aimed to develop and validate a simple, sensitive and economical bio-analytical high-performance liquid chromatographicultraviolet method for the determination of irbesartan in human plasma. The method involves the use of simple precipitation method for the determination of irbesartan, using methanol as precipitating agent and losartan as internal standard. The separation was achieved using Zorbax C18 column (150 x 4.6 mm, 5µm), mobile phase consists of methanol and 0.2% formic acid in water at the ratio 85:15, v/v using detection wavelength of 237 nm. Further, the developed method was validated as per US-FDA guidelines for accuracy, precision, linearity, stability, detection and quantification limit. The method developed was found to be linear over the concentration ranging from 5 to 500 ng/ml with a correlation coefficient of 0.9987. The LOD and LLOQ of the method were found to be 1 ng/ml and 5 ng/ml, respectively.


Sign in / Sign up

Export Citation Format

Share Document