scholarly journals Recent Advances in SPE-Chiral-HPLC Methods for Enantiomeric Separation of Chiral Drugs in Biological Samples

2013 ◽  
Vol 51 (7) ◽  
pp. 645-654 ◽  
Author(s):  
I. Ali ◽  
S. D. Alam ◽  
Z. A. Al-Othman ◽  
J. A. Farooqi
2018 ◽  
Vol 1044 ◽  
pp. 12-28 ◽  
Author(s):  
Camila Marchioni ◽  
Israel Donizeti de Souza ◽  
Vinicius Ricardo Acquaro ◽  
José Alexandre de Souza Crippa ◽  
Vitor Tumas ◽  
...  

Separations ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 55
Author(s):  
Natalia Casado ◽  
Zhengjin Jiang ◽  
María Ángeles García ◽  
María Luisa Marina

A chiral analytical methodology was developed by nano-liquid chromatography (nano-LC) enabling the enantiomeric separation of two chiral drugs, lacosamide (novel antiepileptic drug) and colchicine (antiuremic drug), commercialized as pure enantiomers. A capillary column lab-packed with an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase was used in a lab-assembled nano-LC system. Lacosamide and colchicine enantiomers were separated in less than 8.0 and 9.0 min, respectively, with resolution values of 1.6 and 2.3, using 20 nL of sample and 1.8 µL of mobile phase per analysis. The analytical characteristics of the proposed methodology were evaluated according to the International Council for Harmonisation (ICH) guidelines, showing good analytical performance with good recoveries (97–98% and 100–103%) and precision values (relative standard deviation (RSD) <10.5 and <3.0%) for lacosamide and colchicine enantiomers, respectively. LODs were 1.7 and 2.0 µg/mL for (S)- and (R)-lacosamide, respectively, and 1.0 µg/mL for both colchicine enantiomers. Additionally, the developed methodology enabled to detect a 0.1% of the enantiomeric impurities, fulfilling the ICH regulation requirements. The method was applied to the determination of lacosamide and colchicine enantiomers in different pharmaceutical formulations to ensure their quality control. The content of the enantiomeric impurities was below a 0.1% and the amount of (R)-lacosamide and (S)-colchicine agreed with their labeled contents.


2018 ◽  
Vol 16 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Asma Rahman ◽  
Mohammad Rashedul Haque ◽  
M Muhibur Rahman ◽  
Mohammad A Rashid

In the present study a rapid, accurate and precise chiral HPLC method was developed and validated for enantiomeric separation of racemate citalopram and escitalopram according to the guidelines of United States of Pharmacopeia (USP) and International Conference on Harmonization (ICH). The chiral chromatographic separation was achieved with ammonium acetate/ ethanol/ 2-propanol/ methylene dichloride (100 : 150 : 70 : 30, v/v) at a flow rate of 0.5 ml/min using a chiral CD-PH column. The HPLC analyses were monitored at 254 nm. The method showed a good linearity with regression coefficient (r2) of 0.998 in the range of 20.0-70.0 μg/ml for escitalopram. The detection limit (LOD), quantitation limit (LOQ) and average percentage of recovery for escitalopram were found to be 2.54, 7.68 μg/ml and 100.28% to 102.86%, respectively. The percentage of relative standard deviation (%RSD) for intra- and inter- day precision were found as 0.16% and 0.09%, respectively. The established method proved as reproducible with a %RSD value of less than 2 and having the robustness within specified limit. The present study also showed the enantiomeric purity or excess (%ee) of seven pharmaceutical preparations of escitalopram. Thus the proposed chiral method can be applied for the enantiomeric purity determination of escitalopram formulations.Dhaka Univ. J. Pharm. Sci. 16(2): 165-172, 2017 (December)


2004 ◽  
Vol 35 (5) ◽  
pp. 1279-1285 ◽  
Author(s):  
Y.Ravindra Kumar ◽  
G. Ramulu ◽  
V.V. Vevakanand ◽  
Gopal Vaidyanathan ◽  
Keesari srinivas ◽  
...  

2020 ◽  
Vol 58 (10) ◽  
pp. 969-975
Author(s):  
Zifu Xu ◽  
Jin Guan ◽  
Huili Shao ◽  
Shitong Fan ◽  
Xiaoyu Li ◽  
...  

Abstract A new capillary electrophoresis method was applied to chiral separation of three amino acids, including D,L-tryptophan, D,L-tyrosine and D,L-phenylalanine. The chiral resolution was attained in an untreated fused-sillica capillary using a dual chiral selector, which was made up of Cu(II)-L-histidine complex and β-cyclodextrin (CD). The cardinal factors influencing its separation efficiency, such as chiral selectors, buffer pH and applied voltage, were optimized. Best results were acquired by using a buffer consisting of 10 mmol/L Cu(II), 13 mmol/L L-histidine, 8 mmol/L β-CD, 5 mmol/L phosphate adjusted to pH 5.0 and 15 kV applied voltage. All enantiomers were entirely resolved within 20 min with high resolutions of 3.6~6.1. The analysis method was verified through the determination of D,L-tryptophan in terms of linearity, precision and accuracy. And the robustness of this method was proved. The Limit of Detection and Limit of Quantification for both enantiomers were 2.5 and 5 μg/mL, respectively. The method was perfectly applied to the determination of the enantiomeric purity of L-tryptophan. Furthermore, the interaction between Cu(II)-L-histidine complex and β-CD was also studied using Ultraviolet-visible and 1H NMR spectroscopy to explain the synergistic effect involved. The results illustrated that Cu(II)-L-histidine complex and β-CD played a synergistic role in the enantiomeric separation of chiral drugs, with good prospects for application.


Sign in / Sign up

Export Citation Format

Share Document