scholarly journals Blood parasite load as an early marker to predict treatment response in visceral leishmaniasis in Eastern Africa

Author(s):  
Luka Verrest ◽  
Anke E Kip ◽  
Ahmed Musa ◽  
Gerard J Schoone ◽  
Henk D F H Schallig ◽  
...  

Abstract Background In order to expedite the development of new oral treatment regimens for visceral leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-term outcomes. Methods Data from three clinical trials were combined in this study, where Eastern African VL patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative PCR (qPCR) before, during and up to six months after treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to determine the power associated with the use of blood parasite load as a surrogate endpoint to predict clinical outcome at six months. Results The absolute parasite density on day 56 after start of treatment was found to be a highly sensitive predictor of relapse within six months of follow-up at a cut-off of 20 parasites/mL (AUC 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite loads (ρ= 0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical trial simulations indicated a >80% power to detect a difference in cure rate between treatment regimens if this difference was high (>50%) and when minimally 30 patients were included per regimen. Conclusion Blood Leishmania parasite load determined by qPCR is a promising early biomarker to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new chemical entities.

2016 ◽  
Vol 60 (6) ◽  
pp. 3794-3801 ◽  
Author(s):  
Edézio Ferreira Cunha-Júnior ◽  
Thiago Martino Martins ◽  
Marilene Marcuzzo Canto-Cavalheiro ◽  
Paulo Roberto Marques ◽  
Elyzabeth Avvad Portari ◽  
...  

Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and is the second major cause of death by parasites, after malaria. The arsenal of drugs against leishmaniasis is small, and each has a disadvantage in terms of toxicity, efficacy, price, or treatment regimen. Our group has focused on studying new drug candidates as alternatives to current treatments. The pterocarpanquinone LQB-118 was designed and synthesized based on molecular hybridization, and it exhibited antiprotozoal and anti-leukemic cell line activities. Our previous work demonstrated that LQB-118 was an effective treatment for experimental cutaneous leishmaniasis. In this study, we observed that treatment with 10 mg/kg of body weight/day LQB-118 orally inhibited the development of hepatosplenomegaly with a 99% reduction in parasite load. Anin vivotoxicological analysis showed no change in the clinical, biochemical, or hematological parameters. Histologically, all of the analyzed organs were normal, with the exception of the liver, where focal points of necrosis with leukocytic infiltration were observed at treatment doses 5 times higher than the therapeutic dose; however, these changes were not accompanied by an increase in transaminases. Our findings indicate that LQB-118 is effective at treating different clinical forms of leishmaniasis and presents no relevant signs of toxicity at therapeutic doses; thus, this framework is demonstrated suitable for developing promising drug candidates for the oral treatment of leishmaniasis.


2015 ◽  
Vol 53 (12) ◽  
pp. 3905-3907 ◽  
Author(s):  
Medhavi Sudarshan ◽  
Toolika Singh ◽  
Jaya Chakravarty ◽  
Shyam Sundar

Parasitological diagnosis of visceral leishmaniasis (VL) by splenic smear is highly sensitive, but it is associated with the risk of severe hemorrhage. In this study, the diagnosis of VL using quantitative PCR (qPCR) in peripheral blood was evaluated in 100 patients with VL. Blood parasitemia ranged from 5 to 93,688 leishmania parasite genomes/ml of blood and positively correlated with splenic score (P< 0.0001;r2= 0.58). Therefore, quantification of parasite genomes by qPCR can replace invasive procedures for diagnostic and prognostic evaluations.


1999 ◽  
Vol 43 (1) ◽  
pp. 172-174 ◽  
Author(s):  
Jean-Pierre Gangneux ◽  
Michael Dullin ◽  
Annie Sulahian ◽  
Yves Jean-Francois Garin ◽  
Francis Derouin

ABSTRACT In a murine model of Leishmania infantum visceral leishmaniasis, metronidazole, ketoconazole, fluconazole, itraconazole, and terbinafine were less effective than antimonial agents in reducing hepatic parasite load. Ketoconazole potentiated the effect of meglumine antimoniate reference therapy through its marked activity against spleen infection.


Behaviour ◽  
2011 ◽  
Vol 148 (11-13) ◽  
pp. 1372-1392 ◽  
Author(s):  
Alice U. Edler ◽  
Thomas W.P. Friedl

AbstractThe role of bright plumage colouration for female choice has been the focus of research in sexual selection for many years, with several studies showing that females prefer the most elaborately ornamented males, which are often also the highest quality individuals. Here, we analysed the associations between reproductive performance and plumage, body condition and blood parasite load in the red bishop (Euplectes orix), a sexually dimorphic and polygynous weaverbird species, where males in a carotenoid-based orange-to-red breeding plumage defend territories and build many nests to which they try to attract females. Male reproductive success in terms of number of nests accepted was mainly determined by the number of nests built, but was also positively related to blood parasite load, while we found no influence of plumage characteristics. Together with previously obtained data, our results indicate that plumage characteristics in the red bishop do not affect male reproductive success and are generally not suitable to reliably indicate male quality. We suggest that the primary function of the brilliant orange-scarlet breeding plumage might be presence signalling in terms of increasing conspicuousness of breeding males to females searching for mates.


2017 ◽  
Vol 191 (3) ◽  
pp. 318-327 ◽  
Author(s):  
P. Kumar ◽  
P. Misra ◽  
C. P. Thakur ◽  
A. Saurabh ◽  
N. Rishi ◽  
...  

Author(s):  
Kaitlyn Johnson ◽  
Grant R. Howard ◽  
Daylin Morgan ◽  
Eric A. Brenner ◽  
Andrea L. Gardner ◽  
...  

SummaryA significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other data types. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic mechanistic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal population-size data. We demonstrate that the explicit inclusion of the transcriptomic information in the parameter estimation is critical for identification of the model parameters and enables accurate prediction of new treatment regimens. Inclusion of the transcriptomic data improves predictive accuracy in new treatment response dynamics with a concordance correlation coefficient (CCC) of 0.89 compared to a prediction accuracy of CCC = 0.79 without integration of the single cell RNA sequencing (scRNA-seq) data directly into the model calibration. To the best our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with longitudinal treatment response data into a mechanistic mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multimodal data sets into identifiable mathematical models to develop optimized treatment regimens from data.


Sign in / Sign up

Export Citation Format

Share Document