meglumine antimoniate
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 58)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 141 ◽  
pp. 70-78
Author(s):  
Jamille Mirelle de Oliveira Cardoso ◽  
Rory Cristiane Fortes de Brito ◽  
Fernando Augusto Siqueira Mathias ◽  
Levi Eduardo Soares Reis ◽  
João Filipe Pereira Vieira ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gustavo Gonçalves ◽  
Monique Paiva Campos ◽  
Alessandra Silva Gonçalves ◽  
Lia Carolina Soares Medeiros ◽  
Fabiano Borges Figueiredo

Abstract Background Leishmania infantum is the most important etiological agent of visceral leishmaniasis in the Americas and Mediterranean region, and the dog is the main host. Miltefosine was authorized to treat canine leishmaniasis (CanL) in Brazil in 2017, but there is a persistent fear of the emergence of parasites resistant not only to this drug but, through cross-resistance mechanisms, also to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are drivers of parasite virulence. In this context, the aim of this study was to analyze the impact of treating a dog with miltefosine and allopurinol on the generation of parasites resistant to miltefosine, amphotericin B and meglumine antimoniate. Methods In vitro susceptibility tests were conducted against miltefosine, amphotericin B and meglumine antimoniate with T0 (parasites isolated from a dog before treatment with miltefosine plus allopurinol), T1 (after 1 course of treatment) and T2 (after 2 courses of treatment) isolates. The rates of cell proliferation, infectivity and metacyclogenesis of the isolates were also evaluated. Results The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. An increasing trend in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. Conclusion The data indicates an increased L. infantum resistance to miltefosine and amphotericin B after the treatment of a dog with miltefosine plus allopurinol. Further studies with a larger number of L. infantum strains isolated from dogs with varied immune response profiles and undergoing different treatment regimes, are advocated. Graphical Abstract


2021 ◽  
Vol 15 (9) ◽  
pp. e0009734
Author(s):  
Carla Oliveira-Ribeiro ◽  
Maria Inês Fernandes Pimentel ◽  
Liliane de Fátima Antonio Oliveira ◽  
Érica de Camargo Ferreira e Vasconcellos ◽  
Fatima Conceição-Silva ◽  
...  

Background Treatment of cutaneous leishmaniasis (CL) remains challenging since the drugs currently used are quite toxic, thus contributing to lethality unrelated to the disease itself but to adverse events (AE). The main objective was to evaluate different treatment regimens with meglumine antimoniate (MA), in a reference center in Rio de Janeiro, Brazil. Methodology A historical cohort of 592 patients that underwent physical and laboratory examination were enrolled between 2000 and 2017. The outcome measures of effectiveness were epithelialization and complete healing of cutaneous lesions. AE were graded using a standardized scale. Three groups were evaluated: Standard regimen (SR): intramuscular (IM) MA 10–20 mg Sb5+/kg/day during 20 days (n = 46); Alternative regimen (AR): IM MA 5 mg Sb5+/kg/day during 30 days (n = 456); Intralesional route (IL): MA infiltration in the lesion(s) through subcutaneous injections (n = 90). Statistical analysis was performed through Fisher exact and Pearson Chi-square tests, Kruskal-Wallis, Kaplan-Meier and log-rank tests. Results SR, AR and IL showed efficacy of 95.3%, 84.3% and 75.9%, with abandonment rate of 6.5%, 2.4% and 3.4%, respectively. IL patients had more comorbidities (58.9%; p = 0.001), were mostly over 50 years of age (55.6%), and had an evolution time longer than 2 months (65.6%; p = 0.02). Time for epithelialization and complete healing were similar in IL and IM MA groups (p = 0.9 and p = 0.5; respectively). Total AE and moderate to severe AE that frequently led to treatment interruption were more common in SR group, while AR and IL showed less toxicity. Conclusions/Significance AR and IL showed less toxicity and may be good options especially in CL cases with comorbidities, although SR treatment was more effective. IL treatment was an effective and safe strategy, and it may be used as first therapy option as well as a rescue scheme in patients initially treated with other drugs.


Author(s):  
Olga Lucía Fernández ◽  
Lady Giovanna Ramírez ◽  
Míriam Díaz-Varela ◽  
Fabienne Tacchini-Cottier ◽  
Nancy Gore Saravia

Emerging evidence indicates that innate host response contributes to the therapeutic effect of antimicrobial medications. Recent studies have shown that Leishmania parasites derived by in vitro selection for resistance to pentavalent antimony (SbV) as meglumine antimoniate (MA) modulate the activation of neutrophils. However, whether modulation of neutrophil activation extends to natural resistance to this antileishmanial drug has not been established. We have evaluated the influence of clinical strains of L. (V.) panamensis having intrinsic tolerance/resistance to SbV, on the inflammatory response of neutrophils during ex vivo exposure to MA. Accordingly, neutrophils obtained from healthy donors were infected with clinical strains that are sensitive (n = 10) or intrinsically tolerant/resistant to SbV (n = 10) and exposed to a concentration approximating the maximal plasma concentration (Cmax) of SbV (32 µg/ml). The activation profile of neutrophils was evaluated as the expression of the surface membrane markers CD66b, CD18, and CD62L by flow cytometry, measurement of reactive oxygen species (ROS) by luminometry, and NET formation using Picogreen to measure dsDNA release and quantification of NETs by confocal microscopy. These parameters of activation were analyzed in relation with parasite susceptibility to SbV and exposure to MA. Here, we show that clinical strains presenting intrinsic tolerance/resistance to SbV induced significantly lower ROS production compared to drug-sensitive clinical strains, both in the presence and in the absence of MA. Likewise, analyses of surface membrane activation markers revealed significantly higher expression of CD62L on cells infected with intrinsically SbV tolerant/resistant L. (V.) panamensis than cells infected with drug-sensitive strains. Expression of other activation markers (CD18 and CD66b) and NET formation were similar for neutrophils infected with SbV sensitive and tolerant clinical strains under the conditions evaluated. Exposure to MA broadly impacted the activation of neutrophils, diminishing NET formation and the expression of CD62L, while augmenting ROS production and CD66b expression, independently of the parasite susceptibility phenotype. These results demonstrated that activation of human neutrophils ex vivo is differentially modulated by infection with clinical strains of L. (V.) panamensis having intrinsic tolerance/resistance to SbV compared to sensitive strains, and by exposure to antimonial drug.


2021 ◽  
Vol 71 (4) ◽  
pp. 1235-38
Author(s):  
Moizza Tahir ◽  
Uzma Bashir ◽  
Najia Ahmed ◽  
Jauhar Mumtaz

Objective: To identify electrocardiographic changes associated with parenteral meglumine antimoniate and to estimate frequency of these changes. Study Design: Prospective observational study. Place and Duration of Study: Dermatology department, Combined Military Hospital Quetta and Multan, from Apr 2018 to Feb 2019. Methodology: Total of 87 patients was recruited by consecutive sampling technique. Cases of Leishmaniasis were confirmed by Leishmania donovani bodies in smear or skin biopsy. Base line electrocardiograph was done and then repeated weekly. All patients were given 15mg/kg body weight intramuscular meglumine antimoniate (Glucantime). Any change in electrocardiograph was documented. Follow up electrocardiograph was repeated two weeks after hospital discharge. Data was analyzed using SPSS-20. Results: Changes in electrocardiograph appeared between 7-27 days mean 16 SD ± 4.58. T-wave inversion was recorded in 41 (47.12%), ST elevation in 1 (1.14%), prolonged QT interval in 1 (1.14%). Meglumine antimoniate therapy was discontinued after ECG change for 5 ± SD 3 days of therapy. Follow up electrocardiograph two weeks after hospital discharge was normal. Conclusion: Early repolarization defects of T wave inversion and ST segment deviation were found with standard doses of meglumine antimoniate therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ana Patricia Cacua Gélvez ◽  
José Antonio Picanço Diniz Junior ◽  
Rebecca Thereza Silva Santa Brígida ◽  
Ana Paula Drummond Rodrigues

Abstract Background Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle–polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. Results Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. Conclusions Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Meliana Borilli Pereira ◽  
Bruna Gomes Sydor ◽  
Karla Gabriela Memare ◽  
Thaís Gomes Verzignassi Silveira ◽  
Sandra Mara Alessi Aristides ◽  
...  

Background: Nanotechnology is a promising strategy to improve existing antileishmanial agents. Objective: To explore the evidence of encapsulated meglumine antimoniate for cutaneous leishmaniasis treatment in animal models. Materials & methods: The studies were recovered from PubMed, Scopus, EMBASE, LILACS, WoS and Google according to eligibility criteria following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, Comparison, Outcomes and Study design (PICOS) strategy. Study appraisal was assessed using the Animal Research Reporting of In Vivo Experiments, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations. Results: Five studies were included. Liposomes, metallic and polymeric nanoparticles were tested in BALB/c mice against Leishmania major, L. tropica or L. amazonensis. Limitations: Few studies were found to meet the eligibility criteria. Conclusion: All formulations had a significant efficacy, similar to the meglumine antimoniate reference treatment concerning the lesion size and parasite burden. The studies had a high and moderate risk of bias, and the confidence in cumulative evidence was considered low. Therefore, we encourage the development of high-quality preclinical studies. Registration: PROSPERO register CRD42020170191.


2021 ◽  
pp. 2100046
Author(s):  
Donato Cosco ◽  
Federica Bruno ◽  
Germano Castelli ◽  
Roberto Puleio ◽  
Sonia Bonacci ◽  
...  

Author(s):  
María Fernanda García-Bustos ◽  
Agustín Moya Álvarez ◽  
Cecilia Pérez Brandan ◽  
Cecilia Parodi ◽  
Andrea Mabel Sosa ◽  
...  

Antimonials continue to be considered the first-line treatment for leishmaniases, but its use entails a wide range of side effects and serious reactions. The search of new drugs requires the development of methods more sensitive and faster than the conventional ones. We developed and validated a fluorescence assay based in the expression of tdTomato protein by Leishmania, and we applied this method to evaluate the activity in vitro of flavonoids and reference drugs. The pIR1SAT/tdTomato was constructed and integrated into the genome of Leishmania (Leishmania) amazonensis. Parasites were selected with nourseothricin (NTC). The relation of L. amaz/tc3 fluorescence and the number of parasites was determined; then the growth in vitro and infectivity in BALB/c mice was characterized. To validate the fluorescence assay, the efficacy of miltefosine and meglumine antimoniate was compared with the conventional methods. After that, the method was used to assess in vitro the activity of flavonoids; and the mechanism of action of the most active compound was evaluated by transmission electron microscopy and ELISA. A linear correlation was observed between the emission of fluorescence of L. amaz/tc3 and the number of parasites (r2 = 0.98), and the fluorescence was stable in the absence of NTC. No differences were observed in terms of infectivity between L. amaz/tc3 and wild strain. The efficacy of miltefosine and meglumine antimoniate determined by the fluorescence assay and the microscopic test showed no differences, however, in vivo the fluorescence assay was more sensitive than limiting dilution assay. Screening assay revealed that the flavonoid galangin (GAL) was the most active compound with IC50 values of 53.09 µM and 20.59 µM in promastigotes and intracellular amastigotes, respectively. Furthermore, GAL induced mitochondrial swelling, lipid inclusion bodies and vacuolization in promastigotes; and up-modulated the production of IL-12 p70 in infected macrophages. The fluorescence assay is a useful tool to assess the anti-leishmanial activity of new compounds. However, the assay has some limitations in the macrophage-amastigote model that might be related with an interfere of flavanol aglycones with the fluorescence readout of tdTomato. Finally, GAL is a promising candidate for the development of new treatment against the leishmaniasis.


2021 ◽  
Vol 9 (6) ◽  
pp. 1147
Author(s):  
Aurora Diotallevi ◽  
Gloria Buffi ◽  
Giovanni Corbelli ◽  
Marcello Ceccarelli ◽  
Margherita Ortalli ◽  
...  

Cutaneous leishmaniasis (CL) caused by Leishmania (Leishmania) infantum is endemic in the Mediterranean basin. Here we report an autochthonous case of CL in a patient living in central Italy with an unsatisfactory response to treatment with intralesional Meglumine Antimoniate and in vitro demonstration of reduced susceptibility to SbIII. Parasitological diagnosis was first achieved by histopathology on tissue biopsy and the patient was treated with a local infiltration of Meglumine Antimoniate. Since the clinical response at 12 weeks from the treatment’s onset was deemed unsatisfactory, two further skin biopsies were taken for histopathological examination, DNA extraction and parasite isolation. L. (L.) infantum was identified by molecular typing. The low susceptibility to Meglumine Antimoniate was confirmed in vitro: the promastigotes from the patient strain showed significantly lower susceptibility to SbIII (the active trivalent form of antimonial) compared to the reference strain MHOM/TN/80/IPT1. The patient underwent a new treatment course with intravenous liposomal Amphotericin B, reaching complete healing of the lesion. Additional studies are needed to confirm the epidemiological and clinical relevance of reduced susceptibility to SbIII of human L. (L.) infantum isolate in Italy.


Sign in / Sign up

Export Citation Format

Share Document