scholarly journals Seasonal Movements and Pelagic Habitat Use of Murres and Puffins Determined by Satellite Telemetry

The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Scott A. Hatch ◽  
Paul M. Meyers ◽  
Danial M. Mulcahy ◽  
David C. Douglas

AbstractWe tracked the movements of Common Murres (Uria aalge), Thick-billed Murres (U. lomvia), and Tufted Puffins (Fratercula cirrhata) using surgically implanted satellite transmitters. From 1994–1996, we tagged 53 birds from two colonies in the Gulf of Alaska (Middleton Island and Barren Islands) and two colonies in the Chukchi Sea (Cape Thompson and Cape Lisburne). Murres and puffins ranged 100 km or farther from all colonies in summer, but most instrumented birds had abandoned breeding attempts and their movements likely differed from those of actively breeding birds. However, murres whose movements in the breeding period suggested they still had chicks to feed foraged repeatedly at distances of 50–80 km from the Chukchi colonies in 1995. We detected no differences in the foraging patterns of males and females during the breeding season, nor between Thick-billed and Common Murres from mixed colonies. Upon chick departure from the northern colonies, male murres—some believed to be tending their flightless young—drifted with prevailing currents toward Siberia, whereas most females flew directly south toward the Bering Sea. Murres from Cape Thompson and Cape Lisburne shared a common wintering area in the southeastern Bering Sea in 1995, and birds from Cape Lisburne returned to the same area in the winter of 1996. We conclude that differences in foraging conditions during summer rather than differential mortality rates in winter account for contrasting population trends previously documented in those two colonies.

1962 ◽  
Vol 19 (5) ◽  
pp. 815-838 ◽  
Author(s):  
Gordon C. Pike

Observations of gray whales from the coasts of British Columbia, Washington, and Alaska are compared with published accounts in order to re-assess knowledge of migration and feeding of the American herd. Source of material is mainly from lighthouses and lightships.The American herd of gray whales retains close contact with the shore during migration south of Alaska. Off Washington and British Columbia the northward migration begins in February, ends in May, and is at a peak during the first two weeks in April; the southward migration occurs in December and January, and is at a peak in late December. Northward migrants stop occasionally to rest or feed; southward migrants are travelling faster and appear not to stop to rest or feed during December and January. Gray whales seen off British Columbia, sometimes in inside protected waters, from June through October, probably remain in this area throughout the summer and fall months.Available evidence suggests that gray whales retain contact with the coast while circumscribing the Gulf of Alaska, enter the Bering Sea through eastern passages of the Aleutian chain, and approach St. Lawrence Island by way of the shallow eastern part of the Bering Sea. Arriving off the coast of St. Lawrence Island in May and June the herd splits with some parts dispersing along the Koryak coast and some parts continuing northward as the ice retreats through Bering Strait. Gray whales feed in the waters of the Chukchi Sea along the Siberian and Alaskan coasts in July, August and September. Advance of the ice through Bering Strait in October initiates the southern migration for most of the herd. In summering areas, in northern latitudes, gray whales feed in shallow waters on benthic and near-benthic organisms, mostly amphipods.There is no evidence to indicate that gray whales utilize ocean currents or follow the same routes as other baleen whales in their migrations. Visual contact with coastal landmarks appear to aid gray whales in successfully accomplishing the 5000-mile migration between summer feeding grounds in the Bering and Chukchi Seas and winter breeding grounds in Mexico.Reconstruction of the migration from all available data shows that most of the American herd breeds and calves in January and February, migrates northward in March, April and May, feeds from June through October, and migrates southward in November and December.


2008 ◽  
Vol 275 (1653) ◽  
pp. 2887-2896 ◽  
Author(s):  
Marion Gschweng ◽  
Elisabeth K.V Kalko ◽  
Ulrich Querner ◽  
Wolfgang Fiedler ◽  
Peter Berthold

Eleonora's falcon ( Falco eleonorae ) is a rare raptor species that delays its breeding period until late summer to feed its young with passerines at the peak of autumn migration. Since the 1950s, this slender winged falcon has been believed to migrate along a historical route via the Red Sea to its main wintering area in Madagascar. In our study, we used satellite telemetry to investigate the real migration route of Eleonora's falcons and found that the species displayed a highly individual migration pattern. Furthermore, juvenile falcons migrated via West Africa to Madagascar and two juveniles could be tracked during spring migration and to their summering areas in East and West Africa. As juveniles migrated independently of adults, we discuss inherited navigation strategies forming part of a complex navigation system. We propose the idea of an orientation mechanism that naive falcons could apply during their long-distance migration towards their faraway wintering area located in the open ocean.


2010 ◽  
Vol 67 (2) ◽  
pp. 386-400 ◽  
Author(s):  
Scott A. Hatch ◽  
Verena A. Gill ◽  
Daniel M. Mulcahy

Seabird mortality associated with longline fishing in the eastern Bering Sea occurs mainly from September to May, with northern fulmars ( Fulmarus glacialis ) comprising the majority (60%) of the bycatch. Along the west coast of North America, winter dieoffs of fulmars may be increasing in frequency and magnitude, the most severe on record being a wreck that peaked in October–November 2003. We deployed satellite transmitters on fulmars from the four main Alaska colonies and tracked individuals for up to 2 years. Fulmars from Hall Island (northern Bering Sea) moved to Russian coastal waters after breeding, while Pribilof Island fulmars (southeastern Bering Sea) remained relatively sedentary year-round. Birds from Chagulak Island (eastern Aleutians) preferred passes between the Aleutian Islands in winter or foraged widely over deep waters of the central Bering Sea and North Pacific. Fulmars from the Semidi Islands (western Gulf of Alaska) migrated directly to waters of the California Current. Individuals from St. George Island (Pribilofs) and Chagulak were consistent in the places that they visited in two successive winters. The Pribilof Islands population is most affected by winter longlining for groundfish, whereas the Semidi Islands colony sustains most of the natural mortality that occurs off Washington, Oregon, and California.


2021 ◽  
Author(s):  
Eric Hoberg ◽  
Kaylen Marie Soudachanh

We begin resolution of the Tetrabothrius jagerskioeldi–species complex with descriptions of Tetrabothrius alcae n. sp. based on numerous specimens, primarily in murres (species of Uria), from the greater North Pacific basin and Tetrabothrius sinistralis n. sp. based on cestodes in guillemots (species of Cepphus) from the central Bering Sea and West Greenland. These tetrabothriids are characterized, among 44 species of Tetrabothrius in avian hosts, by attributes of the scolex, male and female organ systems, structure and dimensions of the vitelline gland, numbers of testes, configuration of the genital atrium, genital papillae and the male and female atrial canals, position of the genital ducts relative to the poral osmoregulatory canals, structure, dimensions and position of the vaginal seminal receptacle, and dimensions of the embryophore and oncosphere, in addition to a broader array of characters. Remarkably, T. alcae, T. sinistralis, and a cryptic complex had remained unrecognized for the past century, given that these species are unequivocally differentiated by multiple suites of unique structural attributes relative to T. jagerskioeldi. Alcids and cestodes of the T. jagerskioeldi–complex are restricted to cold marine systems of advection and upwelling along coastal margins adjacent to the continental shelf or are associated with archipelagos (especially the Aleutian Arc), isolated islands and rocky headlands of the Bering Sea, Chukchi Sea, Gulf of Alaska, Sea of Okhotsk, and Sea of Japan. Tetrabothrius alcae, T. jagerskioeldi, and T. sinistralis may occur in sympatry but with minimal overlap in the faunas associated with murres (Alcini) and guillemots (Cepphini). Transmission for cestodes and persistence of this fauna is expected to be associated with pelagic and neritic systems adjacent to colony sites in zones where critical prey species are concentrated or secondarily dispersed downstream by predictable advective and upwelling processes and become available to foraging birds. Faunal assembly represents the outcomes of oscillating climate, shifting ranges (breakdown in isolation, ecological fitting, and exploration modes for cestodes) and the changing interfaces for resource availability maintained by trophic and habitat overlaps. Dynamics at these ecotones constitute the nexus of opportunity and capacity for infection by species of Tetrabothrius among avian hosts where capacity appears broad and opportunity is ecologically restricted in space and prevatime. Life history pathways for cestodes are tied to trophic associations and dynamics at mesoscales across marine domains and provinces. Resilience and connectivity through ecological fitting strongly suggest the influence of multiple trophic pathways for transmission and persistence of this complex fauna through differing assemblages of zooplankters, fishes, and cephalopods depending on locality, oceanographic conditions, and temporal variability. Changing conditions, especially ecological perturbations driven by climate oscillations, directly determine production cycles and distributions of micro- and macro-zooplankton, forage fishes, cephalopods, and trophic structure in high-latitude marine ecosystems. Expanding regimes of accelerating change emphasize the critical importance of field collections, archives, and baselines to assess biological outcomes across temporal and spatial scales. Parasite assemblages reveal macro- to meso-scale connectivity serving as adjuncts and proxies in recognizing and understanding outcomes for episodes of environmental oscillation and directional atmospheric and oceanic warming in marine ecosystems.


2015 ◽  
Vol 12 (21) ◽  
pp. 17721-17750 ◽  
Author(s):  
B. Nishizawa ◽  
K. Matsuno ◽  
E. A. Labunski ◽  
K. J. Kuletz ◽  
A. Yamaguchi ◽  
...  

Abstract. Short-tailed shearwater Puffinus tenuirostris is one the of abundant marine top predators in the Pacific; this seabird spend its non-breeding period in the northern North Pacific during May–September and many visit the southern Chukchi Sea in July–September. We examined factors affecting this seasonal pattern of distribution by counting short-tailed shearwaters from boats. Their main prey, krill was sampled by NORPAC net in the southeastern Bering Sea/Aleutian Islands and in the Bering Strait/southern Chukchi Sea. Short-tailed shearwaters mainly distributed in the southeastern Bering Sea/Aleutian Islands (60 ± 473 birds km−2) in summer (July) but in the Bering Strait/southern Chukchi Sea (19 ± 91 birds km−2) in fall (September). In the Bering Strait/southern Chukchi Sea size of krill was greater in fall (9.6 ± 5.0 mm in total length) than in summer (1.9 ± 1.2 mm). Within the Bering Strait/southern Chukchi Sea in fall, short-tailed shearwaters occurred more frequently in cells (50 km × 50 km) where large krill was more abundant. Our results suggest that the seasonal northward movement of short-tailed shearwaters could be associated with the seasonal increase of large krill in the Bering Strait/southern Chukchi Sea. This study substantiates the importance of krill, which is advected from the Pacific, as a prey of top predators in the Arctic marine ecosystem.


1994 ◽  
Vol 28 (12) ◽  
pp. 746-753 ◽  
Author(s):  
Hisato Iwata ◽  
Shinsuke Tanabe ◽  
Mari Aramoto ◽  
Norio Sakai ◽  
Ryo Tatsukawa

2017 ◽  
Vol 14 (1) ◽  
pp. 203-214 ◽  
Author(s):  
Bungo Nishizawa ◽  
Kohei Matsuno ◽  
Elizabeth A. Labunski ◽  
Kathy J. Kuletz ◽  
Atsushi Yamaguchi ◽  
...  

Abstract. The short-tailed shearwater (Ardenna tenuirostris) is one of the abundant marine top predators in the Pacific; this seabird spends its non-breeding period in the northern North Pacific during May–October and many visit the southern Chukchi Sea in August–September. We examined potential factors affecting this seasonal pattern of distribution by counting short-tailed shearwaters from boats. Their main prey, krill, was sampled by net tows in the southeastern Bering Sea/Aleutian Islands and in the Bering Strait/southern Chukchi Sea. Short-tailed shearwaters were mainly distributed in the southeastern Bering Sea/Aleutian Islands (60 ± 473 birds km−2) in July 2013, and in the Bering Strait/southern Chukchi Sea (19 ± 91 birds km−2) in September 2012. In the Bering Strait/southern Chukchi Sea, krill size was greater in September 2012 (9.6 ± 5.0 mm in total length) than in July 2013 (1.9 ± 1.2 mm). Within the Bering Strait/southern Chukchi Sea in September 2012, short-tailed shearwaters occurred more frequently in cells (50  ×  50 km) where large-sized krill were more abundant. These findings, and information previously collected in other studies, suggest that the seasonal northward movement of short-tailed shearwaters might be associated with the seasonal increase in krill size in the Bering Strait/southern Chukchi Sea. We could not, however, rule out the possibility that large interannual variation in krill abundance might influence the seasonal distribution of shearwaters. This study highlights the importance of krill, which is advected from the Pacific, as an important prey of top predators in the Arctic marine ecosystem.


Harmful Algae ◽  
2017 ◽  
Vol 63 ◽  
pp. 13-22 ◽  
Author(s):  
Masafumi Natsuike ◽  
Hiroshi Oikawa ◽  
Kohei Matsuno ◽  
Atsushi Yamaguchi ◽  
Ichiro Imai

Trudy VNIRO ◽  
2018 ◽  
Vol 173 ◽  
pp. 137-156
Author(s):  
G. V. Khen ◽  
◽  
E. O. Basyuk ◽  
K. K. Kivva ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document