scholarly journals Light sheet fluorescence microscopy as a new method for unbiased three-dimensional analysis of vascular injury

Author(s):  
Nicholas E Buglak ◽  
Jennifer Lucitti ◽  
Pablo Ariel ◽  
Sophie Maiocchi ◽  
Francis J Miller ◽  
...  

Abstract Aims Assessment of preclinical models of vascular disease is paramount in the successful translation of novel treatments. The results of these models have traditionally relied on two-dimensional (2D) histological methodologies. Light sheet fluorescence microscopy (LSFM) is an imaging platform that allows for three-dimensional (3D) visualization of whole organs and tissues. In this study, we describe an improved methodological approach utilizing LSFM for imaging of preclinical vascular injury models while minimizing analysis bias. Methods and results The rat carotid artery segmental pressure-controlled balloon injury and mouse carotid artery ligation injury were performed. Arteries were harvested and processed for LSFM imaging and 3D analysis, as well as for 2D area histological analysis. Artery processing for LSFM imaging did not induce vessel shrinkage or expansion and was reversible by rehydrating the artery, allowing for subsequent sectioning and histological staining a posteriori. By generating a volumetric visualization along the length of the arteries, LSFM imaging provided different analysis modalities including volumetric, area, and radial parameters. Thus, LSFM-imaged arteries provided more precise measurements compared to classic histological analysis. Furthermore, LSFM provided additional information as compared to 2D analysis in demonstrating remodelling of the arterial media in regions of hyperplasia and periadventitial neovascularization around the ligated mouse artery. Conclusion LSFM provides a novel and robust 3D imaging platform for visualizing and quantifying arterial injury in preclinical models. When compared with classic histology, LSFM outperformed traditional methods in precision and quantitative capabilities. LSFM allows for more comprehensive quantitation as compared to traditional histological methodologies, while minimizing user bias associated with area analysis of alternating, 2D histological artery cross-sections.

2020 ◽  
Author(s):  
Nicholas E. Buglak ◽  
Jennifer Lucitti ◽  
Pablo Ariel ◽  
Sophie Maiocchi ◽  
Francis J. Miller ◽  
...  

AbstractAimsAssessment of preclinical models of vascular disease are paramount in the successful translation of novel treatments. The results of these models have traditionally relied on 2-D histological methodologies. Light sheet fluorescence microscopy (LSFM) is an imaging platform that allows for 3-D visualization of whole organs and tissues. In this study, we describe an improved methodological approach utilizing LSFM for imaging of preclinical vascular injury models while minimizing analysis bias.Methods and ResultsThe rat carotid artery segmental pressure-controlled balloon injury and mouse carotid artery ligation injury were performed. Arteries were harvested and processed for LSFM imaging and 3-D analysis, as well as for 2-D area histological analysis. Artery processing for LSFM imaging did not induce vessel shrinkage or expansion, and was reversible by rehydrating the artery, allowing for subsequent sectioning and histological staining a posteriori. By generating a volumetric visualization along the length of the arteries, LSFM imaging provided different analysis modalities including volumetric, area, and radial parameters. Thus, LSFM-imaged arteries provided more precise measurements compared to classic histological analysis. Furthermore, LSFM provided additional information as compared to 2-D analysis in demonstrating remodeling of the arterial media in regions of hyperplasia and periadventitial neovascularization around the ligated mouse artery.ConclusionsLSFM provides a novel and robust 3-D imaging platform for visualizing and quantifying arterial injury in preclinical models. When compared with classic histology, LSFM outperformed traditional methods in precision and quantitative capabilities. LSFM allows for more comprehensive quantitation as compared to traditional histological methodologies, while minimizing user bias associated with area analysis of alternating, 2-D histological artery cross-sections.Translational PerspectiveA more reproducible and robust quantitation of vascular pathology in preclinical models is necessary to accelerate translational discovery. Current methodology to assess vascular disease has significant limitations. The methodology described herein employs a modern imaging modality, light sheet fluorescence microscopy (LSFM), to improve assessment of established preclinical vascular injury models. LSFM provides more comprehensive and precise analysis capabilities than classical histological approaches. Hence, LSFM applied to vascular research has the potential to drive new basic discoveries, and ultimately translation of novel therapies.


2014 ◽  
Vol 6 (10) ◽  
pp. 988-998 ◽  
Author(s):  
Francesco Pampaloni ◽  
Ulrich Berge ◽  
Anastasios Marmaras ◽  
Peter Horvath ◽  
Ruth Kroschewski ◽  
...  

This novel system for the long-term fluorescence imaging of live three-dimensional cultures provides minimal photodamage, control of temperature, CO2, pH, and media flow.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hosein Kafian ◽  
Meelad Lalenejad ◽  
Sahar Moradi-Mehr ◽  
Shiva Akbari Birgani ◽  
Daryoush Abdollahpour

Abstract Light-sheet fluorescence microscopy (LSFM) has now become a unique tool in different fields ranging from three-dimensional (3D) tissue imaging to real-time functional imaging of neuronal activities. Nevertheless, obtaining high-quality artifact-free images from large, dense and inhomogeneous samples is the main challenge of the method that still needs to be adequately addressed. Here, we demonstrate significant enhancement of LSFM image qualities by using scanning non-diffracting illuminating beams, both through experimental and numerical investigations. The effect of static and scanning illumination with several beams are analyzed and compared, and it is shown that scanning 2D Airy light-sheet is minimally affected by the inhomogeneities in the samples, and provides higher contrasts and uniform resolution over a wide field-of-view, due to its reduced spatial coherence, self-healing feature and longer penetration depth. Further, the capabilities of the illumination scheme is utilized for both single-and double-wavelength 3D imaging of large and dense mammospheres of cancer tumor cells as complex inhomogeneous biological samples.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Erick Vargas Ordaz ◽  
Sergey Gorelick ◽  
Harrison York ◽  
Bonan Liu ◽  
Michelle L. Halls ◽  
...  

Volumetric, sub-micron to micron level resolution imaging is necessary to assay phenotypes or characteristics at the sub-cellular/organelle scale. However, three-dimensional fluorescence imaging of cells is typically low throughput or compromises...


2015 ◽  
Vol 107 (26) ◽  
pp. 263701 ◽  
Author(s):  
C. K. Rasmi ◽  
Kavya Mohan ◽  
M. Madhangi ◽  
K. Rajan ◽  
U. Nongthomba ◽  
...  

2019 ◽  
Author(s):  
Hosein Kafian ◽  
Meelad Lalenejad ◽  
Sahar Moradi-Mehr ◽  
Shiva Akbari Birgani ◽  
Daryoush Abdollahpour

AbstractLight-sheet fluorescence microscopy (LSFM) has now become a unique technique in different fields ranging from three-dimensional (3D) tissue imaging to real-time functional imaging of neuronal activities. Nevertheless, obtaining high-quality artifact-free images from large, dense and inhomogeneous samples is the main challenge of the method that still needs to be adequately addressed. Here, we demonstrate significant enhancement of LSFM image qualities by using scanning non-diffracting illuminating beams, both through experimental and numerical investigations. The effect of static and scanning illumination with several beams are analyzed and compared, and it is shown that scanning 2D Airy light sheet is minimally affected by the artifacts, and provide higher contrasts and uniform resolution over a wide field-of-view, due to its reduced spatial coherence, self-healing feature and higher penetration depth. Further, the capabilities of the illumination scheme is utilized for both single and double wavelength 3D imaging of a large and dense mammospheres of cancer tumor cells as complex inhomogeneous biological samples.


2017 ◽  
Author(s):  
Raghuveer Parthasarathy

Microbes often live in dense, dynamic, multi-species communities whose architecture and function are intimately intertwined. Imaging these complex, three-dimensional ensembles presents considerable technical challenges, however. In this review, I describe light sheet fluorescence microscopy, a technique that enables rapid acquisition of three-dimensional images over large fields of view and over long durations, and I highlight recent applications of this method to microbial systems that include artificial closed ecosystems, bacterial biofilms, and gut microbiota. I comment also on the history of light sheet imaging and the many variants of the method. Light sheet techniques have tremendous potential for illuminating the workings of microbial communities, a potential that is just beginning to be realized.


2017 ◽  
Author(s):  
Raghuveer Parthasarathy

Microbes often live in dense, dynamic, multi-species communities whose architecture and function are intimately intertwined. Imaging these complex, three-dimensional ensembles presents considerable technical challenges, however. In this review, I describe light sheet fluorescence microscopy, a technique that enables rapid acquisition of three-dimensional images over large fields of view and over long durations, and I highlight recent applications of this method to microbial systems that include artificial closed ecosystems, bacterial biofilms, and gut microbiota. I comment also on the history of light sheet imaging and the many variants of the method. Light sheet techniques have tremendous potential for illuminating the workings of microbial communities, a potential that is just beginning to be realized.


Sign in / Sign up

Export Citation Format

Share Document