scholarly journals Autonomic innervation of the carotid body as a determinant of its sensitivity: implications for cardiovascular physiology and pathology

2020 ◽  
Author(s):  
Fernanda Brognara ◽  
Igor S A Felippe ◽  
Helio C Salgado ◽  
Julian F R Paton

Abstract The motivation for this review comes from the emerging complexity of the autonomic innervation of the carotid body (CB) and its putative role in regulating chemoreceptor sensitivity. With the carotid bodies as a potential therapeutic target for numerous cardiorespiratory and metabolic diseases, an understanding of the neural control of its circulation is most relevant. Since nerve fibres track blood vessels and receive autonomic innervation, we initiate our review by describing the origins of arterial feed to the CB and its unique vascular architecture and blood flow. Arterial feed(s) vary amongst species and, unequivocally, the arterial blood supply is relatively high to this organ. The vasculature appears to form separate circuits inside the CB with one having arterial venous anastomoses. Both sympathetic and parasympathetic nerves are present with postganglionic neurons located within the CB or close to it in the form of paraganglia. Their role in arterial vascular resistance control is described as is how CB blood flow relates to carotid sinus afferent activity. We discuss non-vascular targets of autonomic nerves, their possible role in controlling glomus cell activity, and how certain transmitters may relate to function. We propose that the autonomic nerves sub-serving the CB provide a rapid mechanism to tune the gain of peripheral chemoreflex sensitivity based on alterations in blood flow and oxygen delivery, and might provide future therapeutic targets. However, there remain a number of unknowns regarding these mechanisms that require further research that is discussed.

1989 ◽  
Vol 67 (1) ◽  
pp. 239-242 ◽  
Author(s):  
S. Lahiri ◽  
D. G. Penney ◽  
A. Mokashi ◽  
K. H. Albertine

The purpose of this study was twofold: one concerns carotid blood flow and tissue PO2 and the other the effect of chronic hypoxic hypoxia on enhanced catecholamine content. The rationale was that chronic CO inhalation would not mimic the effect of hypoxia on the carotid body if its tissue blood flow is sufficiently high to counteract the effect of CO on O2 delivery and, hence, on tissue PO2. The differential effects of CO on the carotid body and erythropoietin-producing tissue would also indicate that the effect of hypoxic hypoxia on the carotid body is the result of a direct action of a local low O2 stimulus rather than secondary to a systemic effect initiated by other O2-sensing tissues. To test these alternatives we studied the effects of chronic CO inhalation on carotid body catecholamine content and hematocrit in the rats, which were exposed to an inspired PCO of 0.4–0.5 Torr at an inspired PO2 of approximately 150 Torr for 22 days. The hematocrit of CO-exposed rats was 75 +/- 1.1% compared with 48 +/- 0.7% in controls. Dopamine and norepinephrine content of the carotid bodies (per pair) was 5.88 +/- 0.91 and 3.02 +/- 0.19 ng, respectively, in the CO-exposed rats compared with 6.20 +/- 1.0 and 3.29 +/- 0.6 ng, respectively, in the controls. Protein content of the carotid bodies (per pair) was 18.4 +/- 1.6 and 20.5 +/- 0.9 micrograms, respectively. Thus, despite a vigorous erythropoietic response, the CO-exposed rats failed to show any significant stimulation of carotid body in terms of the content of either catecholamine or protein. The results suggest that carotid body tissue PO2 is not compromised by moderate carboxyhemoglobinemia because of its high tissue blood flow and that the chronic effect of hypoxic hypoxia on carotid body is direct.


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Teresa Gallego-Martin ◽  
Jesus Prieto-Lloret ◽  
Philip Aaronson ◽  
Asuncion Rocher ◽  
Ana Obeso

Carotid body (CB) chemoreceptor cells sense arterial blood PO2, generating a neurosecretory response proportional to the intensity of hypoxia. Hydrogen sulfide (H2S) is a physiological gaseous messenger that is proposed to act as an oxygen sensor in CBs, although this concept remains controversial. In the present study we have used the H2S scavenger and vitamin B12 analog hydroxycobalamin (Cbl) as a new tool to investigate the involvement of endogenous H2S in CB oxygen sensing. We observed that the slow-release sulfide donor GYY4137 elicited catecholamine release from isolated whole carotid bodies, and that Cbl prevented this response. Cbl also abolished the rise in [Ca2+]i evoked by 50 µM NaHS in enzymatically dispersed CB glomus cells. Moreover, Cbl markedly inhibited the catecholamine release and [Ca2+]i rise caused by hypoxia in isolated CBs and dispersed glomus cells, respectively, whereas it did not alter these responses when they were evoked by high [K+]e. The L-type Ca2+ channel blocker nifedipine slightly inhibited the rise in CB chemoreceptor cells [Ca2+]i elicited by sulfide, whilst causing a somewhat larger attenuation of the hypoxia-induced Ca2+ signal. We conclude that Cbl is a useful and specific tool for studying the function of H2S in cells. Based on its effects on the CB chemoreceptor cells we propose that endogenous H2S is an amplifier of the hypoxic transduction cascade which acts mainly by stimulating non-L-type Ca2+ channels.


1975 ◽  
Vol 39 (4) ◽  
pp. 562-566 ◽  
Author(s):  
W. J. Whalen ◽  
P. Nair

In the carotid body (CB) of the anesthetized cat tissue Po2 (Pto2) measured with a micro O2 electrode averaged about 65 mmHg at normal arterial pressure (mean = 96 mmHg). Pto2 correlated significantly with the hematocrit of the arterial blood but not with % saturation. When arterial pressure was reduced (mean = 58 mmHg) by bleeding Pto2 fell significantly. Phentolamine injection (1 mg/kg iv) at the reduced pressure caused Pto2 to rise significantly. At normal arterial pressure blowing moistened O2 over the CB did not affect Pto2 if the electrode tip was about 90 mum into the CB. At a reduced pressure (and blood flow) the sensitive depth increased to about 301 mum, and to about 600 mum when flow was stopped. We concluded that a) the increased chemoceptor discharge usually seen with hemorrhage is due to reduced Pto2; b) the reduction in Pto2 is probably due to reduced blood flow which is, in turn, caused partly, at least, by sympathetic nervous system activity; c) O2 content, rather than Po2, may determine chemoreceptor discharge rate; and d) there are no barriers in the CB which are impermeable to O2.


1993 ◽  
Vol 265 (1) ◽  
pp. E24-E30
Author(s):  
M. Dey ◽  
M. Michalkiewicz ◽  
L. Huffman ◽  
G. A. Hedge

It has been suggested that thyroid blood flow is regulated by both sympathetic and parasympathetic nerves. The purpose of our experiments was to study the role of neuropeptide Y (NPY) in the sympathetic neural control of thyroid blood flow. Sympathetic nerve fibers to the thyroid contain both norepinephrine (NE) and NPY. Therefore, NE (15 nmol iv bolus) and NPY (12 or 1.7 nmol/kg body wt iv infusion; 4 min) were administered to anesthetized male rats (250–300 g) either alone or together, with or without an alpha-adrenergic receptor blocker (phentolamine; 10 mg/kg body wt iv bolus). Experiments were also performed in which the cervical sympathetic trunks were stimulated (30 Hz, 10 V; 0.5 ms; 2 min) with or without phentolamine. Thyroid blood flow was monitored continuously by laser-Doppler blood flowmetry. Results are expressed as thyroid vascular conductance (TVC). NE or NPY at both doses decreased TVC relative to that in control saline-infused rats (P < 0.05). No potentiation of the NE effect by NPY was observed when the first dose of NE was injected 2 min after a high or low dose of NPY. However, the effect of a second dose of NE, injected 15 min after the end of the low dose of NPY, was prolonged compared with the effect of a second dose of NE in saline-infused rats. Phentolamine blocked the effect of NE but not that of NPY. Stimulation of the cervical sympathetic trunks decreased TVC (P < 0.01 vs. sham), and this effect was completely blocked by phentolamine.(ABSTRACT TRUNCATED AT 250 WORDS)


Physiology ◽  
2014 ◽  
Vol 29 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Nanduri R. Prabhakar ◽  
Chris Peers

Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function.


1980 ◽  
Vol 48 (2) ◽  
pp. 362-369 ◽  
Author(s):  
S. Lahiri ◽  
T. Nishino ◽  
E. Mulligan ◽  
A. Mokashi

Discharges from aortic and carotid body chemoreceptor afferents were simultaneously recorded in 18 anesthetized cats to test the hypothesis that aortic chemoreceptors, because of their proximity to the heart, respond to changes in arterial blood gases before carotid chemoreceptors. We found that carotid chemoreceptor responses to the onset of hypoxia and hypercapnia, and to the intravenously administered excitatory drugs (cyanide, nicotine, and doxapram), preceded those of aortic chemoreceptors. Postulating that this unexpected result was due to differences in microcirculation and mass transport, we also investigated their relative speed of responses to changes in arterial blood pressure. The aortic chemoreceptors responded to decreases in arterial blood pressure before the carotid chemoreceptors, supporting the idea that the aortic body has microcirculatory impediments not generally present in the carotid body. These findings strengthened the concept that carotid bodies are more suited for monitoring blood gas changes due to respiration, whereas aortic bodies are for monitoring circulation.


1976 ◽  
Vol 230 (1) ◽  
pp. 19-24 ◽  
Author(s):  
G Mancia ◽  
JT Shepherd ◽  
DE Donald

Interactions among vascular reflexes evoked from carotid sinuses, carotid bodies, and cardiopulmonary region were examined in anesthetized, atropinized, and respired dogs with aortic nerves cut. The carotid sinuses were perfused at 220, 150, and 40-50 mmHg; the chemoreceptors were stimulated by perfusion with hypoxic hypercapnic blood. Cardiopulmonary vasomotor inhibition was interrupted by vagal cold block. Measurements were made of arterial blood pressure and of kidney and hindlimb vascular resistance. At sinus pressures less than 170-160 mmHg, cardiopulmonary vasomotor inhibition increased with increase in blood volume. At high sinus pressure, interruption of this augmented cardiopulmonary inhibition was as ineffective in changing vascular resistance as interruption of the lesser inhibition present during normovolemia. Chemoreceptor stimulation increased the response to vagal block at intermediate but not at high or low sinus pressure. The studies demonstrate the dominant role of the carotid sinus reflex when the three systems interact and the ineffectiveness of chemoreceptor stimulation when carotid or cardiopulmonary inhibition is maximal.


2004 ◽  
Vol 97 (2) ◽  
pp. 731-738 ◽  
Author(s):  
Gail D. Thomas ◽  
Steven S. Segal

Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research.


1994 ◽  
Vol 77 (1) ◽  
pp. 285-289 ◽  
Author(s):  
C. Suguihara ◽  
D. Hehre ◽  
E. Bancalari

To determine whether the neonatal hypoxic ventilatory depression is in part produced by an increased endogenous dopamine release that can depress the activity of central and peripheral chemoreceptors, 31 sedated and spontaneously breathing newborn piglets [age 5 +/- 1 (SD) days; weight 1.7 +/- 0.4 kg] were randomly assigned to an intact carotid body or a chemodenervated group. Minute ventilation (VE), arterial blood pressure, and cardiac output (CO) were measured in room air before infusion of saline or the dopamine antagonist flupentixol (0.2 mg/kg i.v.) and 15 min after drug infusion and were repeated after 10 min of hypoxia (inspiratory O2 fraction = 0.10). VE increased significantly after 10 min of hypoxia in the piglets that received flupentixol independent of whether the carotid bodies were intact or denervated. However, the increase in VE was largest and sustained throughout the 10 min of hypoxia only in the intact carotid body flupentixol group. As expected, the initial increase in VE with hypoxia was abolished by carotid body denervation. Changes in arterial blood gases, CO, and mean arterial blood pressure with hypoxia were not different among groups. These results demonstrate that flupentixol reverses the late hypoxic decrease in VE, acting through peripheral and central dopamine receptors. This effect is not related to changes in cardiovascular function or acid-base status.


1984 ◽  
Vol 246 (5) ◽  
pp. R788-R798
Author(s):  
A. J. Gorman ◽  
K. G. Cornish ◽  
I. H. Zucker

The purpose of the present study was to investigate the relative responses of the renal and iliac vascular beds to the selective chemical stimulation of left ventricular receptors in the conscious dog. Twenty dogs were chronically instrumented to obtain measurements of arterial blood pressure, renal blood flow, and iliac blood flow before and after a bolus intracoronary injection of veratridine (0.4-1.0 micrograms/kg in 0.5-ml vol) with the heart paced. The responses to intracoronary veratridine were a significant reduction in arterial blood pressure averaging 25 mmHg accompanied by a simultaneous reduction in renal blood flow of 25%. Renal resistance did not change throughout the course of the response analyzed (50 s). Iliac blood flow, however, increased, reaching a peak of 35% above control due to a 51% decrease in iliac resistance. After sinoaortic denervation, renal resistance still failed to show a decrease, although the recovery of arterial blood pressure and iliac resistance was prolonged. After a mild hypotensive hemorrhage (20 ml/kg), a greater decrease in iliac resistance occurred with intracoronary veratridine injections, but renal resistance still did not change. The reduction in iliac resistance with intracoronary veratridine was significantly attenuated after phentolamine administration (2 mg/kg iv) but not after atropine alone (0.2 mg/kg iv). A significant cholinergic receptor component of iliac vasodilation was observed only after prior alpha-adrenergic-receptor blockade. The results of this study are consistent with the conclusion that in the conscious dog, left ventricular receptors exert a preferential neural control over skeletal muscle vascular resistance and do not influence renal vascular resistance.


Sign in / Sign up

Export Citation Format

Share Document