scholarly journals Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix

2010 ◽  
Vol 87 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Rolf K. Reed ◽  
Kristofer Rubin
2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Joe Tien ◽  
Le Li ◽  
Ozgur Ozsun ◽  
Kamil L. Ekinci

In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been rigorously tested. Here, we demonstrate experimentally and computationally that the interstitial fluid pressure within an extracellular matrix gel in a microfluidic device can, in some cases, react with a long time delay to external loading. Remarkably, the source of this delay is the slight (∼100 nm in the cases examined here) distension of the walls of the device under pressure. Finite-element models show that the dynamics of interstitial pressure can be described as an instantaneous jump, followed by axial and transverse diffusion, until the steady pressure distribution is reached. The dynamics follow scaling laws that enable estimation of a gel's poroelastic constants from time-resolved measurements of interstitial fluid pressure.


2001 ◽  
Vol 281 (1) ◽  
pp. H7-H13 ◽  
Author(s):  
Ansgar Berg ◽  
Kristofer Rubin ◽  
Rolf K. Reed

The increased capillary fluid filtration required to create a rapid edema formation in acute inflammation can be generated by lowering the interstitial fluid pressure (PIF). The lowering of PIF appears to involve dynamic β1-integrin-mediated interactions between dermal cells and extracellular matrix fibers. The present study specifically investigates the role of the cell cytoskeleton, i.e., the contractile apparatus of cells, in controlling PIF in rat skin as the integrins are linked to both the cytoskeleton and the extracellular matrix. PIF was measured using a micropuncture technique in the dorsal skin of the hind paw at a depth of 0.2–0.5 mm and following the induction of circulatory arrest with the intravenous injection of KCl in pentobarbital anesthesia. This procedure prevented the transcapillary flux of fluid and protein leading to edema formation in acute inflammation, which in turn can increase the PIF and therefore potentially mask a decrease of PIF. Control PIF ( n = 42) averaged −0.8 ± 0.5 (means ± SD) mmHg. In the first group of experiments, subdermal injection of 2 μl cytochalasin D, a microfilament-disrupting drug, lowered PIF to an average of −2.8 ± 0.7 mmHg within 40 min postinjection ( P< 0.05 compared with control). Subdermal injection of vehicle (10% DMSO in PBS or PBS alone) did not change the PIF( P > 0.05). Lowering of the PIF was not observed after the injection of colchicine or nocodazole, which specifically disrupts microtubuli in cultured cells. In the second group of experiments, 2 μl of cytochalasin D injected subdermally into rats with intact circulation increased the total tissue water (TTW) and albumin extravasation rate ( E ALB) by 0.7 ± 0.2 and 0.4 ± 0.3 ml/g dry wt, respectively ( P < 0.05 compared with vehicle). Nocodazole and colchicine did not significantly alter the TTW or E ALB compared with the vehicle ( P > 0.05). Taken together, these findings strongly suggest that the connective tissue cells can participate in control of PIF via the actin filament system. In addition, the observation that subdermal injection of cytochalasin D lowered PIF indicates that a dynamic assembly and disassembly of actin filaments also occurs in the cells of dermal tissues in vivo.


2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

2003 ◽  
Vol 31 (10) ◽  
pp. 1246-1254 ◽  
Author(s):  
David M. Wright ◽  
Helge Wiig ◽  
C. Peter Winlove ◽  
Joel L. Bert ◽  
Rolf K. Reed

PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8149 ◽  
Author(s):  
Agnieszka Kłosowska-Wardęga ◽  
Yoko Hasumi ◽  
Mikhail Burmakin ◽  
Aive Åhgren ◽  
Linda Stuhr ◽  
...  

Drug Delivery ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 404-415 ◽  
Author(s):  
Margo Steuperaert ◽  
Charlotte Debbaut ◽  
Charlotte Carlier ◽  
Olivier De Wever ◽  
Benedicte Descamps ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document