xenograft tumor model
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Zefeng Liu ◽  
Jin Lu ◽  
He Fang ◽  
Jiyao Sheng ◽  
Mengying Cui ◽  
...  

Hepatocellular carcinoma (HCC) has a poor prognosis due to its high malignancy, rapid disease progression, and the presence of chemotherapy resistance. Long-stranded non-coding RNAs (lncRNAs) affect many malignant tumors, including HCC. However, their mechanism of action in HCC remains unclear. This study aimed to clarify the role of DUXAP8 in regulating the malignant phenotype and chemotherapy resistance in HCC. Using an in vivo xenograft tumor model, the regulatory functions and mechanisms of lncRNA DUXAP8 in the progression and response of HCC to chemotherapy were explored. It was found that DUXAP8 was significantly upregulated in a patient-derived xenograft tumor model based on sorafenib treatment, which is usually associated with a relatively poor prognosis in patients. In HCC, DUXAP8 maintained its upregulation in the expression by increasing the stability of m6A methylation-mediated RNA. DUXAP8 levels were positively correlated with the proliferation, migration, invasion, and chemotherapy resistance of HCC in vivo and in vitro. In the mechanistic study, it was found that DUXAP8 competitively binds to miR-584-5p through a competing endogenous RNA (ceRNA) mechanism, thus acting as a molecular sponge for miR-584-5p to regulate MAPK1 expression, which in turn activates the MAPK/ERK pathway. These findings can provide ideas for finding new prognostic indicators and therapeutic targets for patients with HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huiyan Tang ◽  
Chao Li ◽  
Yongsheng Wang ◽  
Liqiang Deng

Sufentanil is a μ-opioid receptor agonist, widely used in intraoperative and postoperative analgesia of esophageal cancer. This study investigated the effects of sufentanil on the proliferation, invasion, and metastasis of esophageal carcinoma cells and its molecular mechanisms. Human esophageal carcinoma cells CaES-17 and Eca-109 were cultured in vitro. Different concentrations of sufentanil (1 and 10 μmol/L) were added to the experimental group. MTT was used to detect the proliferative activity of esophageal carcinoma cells. The migration ability of esophageal carcinoma cells was measured by the scratch test. Transwell was used to detect the invasive ability of esophageal carcinoma cells. The EMT marker expression was detected by qPCR. Meanwhile, effects of sufentanil on NF-κB and Snail expression and nucleation were evaluated. Establish a subcutaneous xenograft tumor model of nude mice with esophageal carcinoma cells and evaluate the antitumor effect of sufentanil. Sufentanil can inhibit the proliferation, invasion, and migration of CaES-17 and Eca-109 cells and has a dose-dependent relationship. The molecular mechanism showed that sufentanil could upregulate the expression of E-cadherin and inhibit the expression of vimentin. Sufentanil can inhibit the expression of NF-κB and Snail, as well as the nuclear expression of NF-κB and Snail. Xenograft tumor model results showed that sufentanil could inhibit tumor proliferation and NF-κB and Snail expression in tumor tissues of nude mice. Sufentanil inhibits esophageal cancer epithelial-mesenchymal transition (EMT) by acting on NF-κB and Snail signaling pathways to inhibit proliferation and metastasis of esophageal cancer.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jie Zeng ◽  
Si-Li He ◽  
Li-Jie Li ◽  
Chen Wang

Abstract Background HPV16 is the predominant cancer-causing strain that is responsible for over 50% of all cervical cancers. In this study, we aim to investigate the therapeutic effect of heat shock protein 90 (Hsp90) knockdown on HPV16+ cervical cancer progression and the underlying mechanism. Methods The transcript and protein expression of Hsp90 in normal cervical and HPV16+ cervical cancer tissues and cell lines were detected by qRT-PCR, immunohistochemistry staining and Western blot. Hsp90 knockdown clones were established using HPV16+ cervical cancer cell line Caski and SiHa cells. The effect of Hsp90 knockdown on HER2/PI3K/AKT pathway and PD-L1 expression was characterized using qRT-PCR and Western blot analysis. Cell proliferation and migration were determined using MTT and transwell assays. Using mouse xenograft tumor model, the impact of Hsp90 knockdown and PD-L1 overexpression on tumor progression was evaluated. Results Hsp90 expression was up-regulated in HPV16+ cervical cancer tissues and cells. Knockdown of Hsp90 inhibited proliferation and migration of Caski and SiHa cells. PD-L1 expression in cervical cancer tissues was positively correlated with Hsp90 expression, and Hsp90 regulated PD-L1 expression via HER2/PI3K/AKT signaling pathway. The results of mouse xenograft tumor model demonstrated Hsp90 knockdown suppressed tumor formation and overexpression of PD-L1 simultaneously eliminated the cancer-suppressive effect of Hsp90 knockdown. Conclusion In this study, we demonstrated a promising tumor-suppressive effect of Hsp90 knockdown in HPV16+ cervical cancers, and investigated the underlying molecular pathway. Our results suggested that Hsp90 knockdown holds great therapeutic potential in treating HPV16+ cervical cancers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yangbo Li ◽  
Pengzhan He ◽  
Yinghui Liu ◽  
Mingming Qi ◽  
Weiguo Dong

Introduction: The gastrointestinal malignancy, gastric cancer (GC), has a high incidence worldwide. Cisplatin is a traditional chemotherapeutic drug that is generally applied to treat cancer; however, drug tolerance affects its efficacy. Sodium butyrate is an intestinal flora derivative that has general anti-cancer effects in vitro and in vivo via pro-apoptosis effects and can improve prognosis in combination with traditional chemotherapy drugs. The present study aimed to assess the effect of sodium butyrate combined with cisplatin on GC.Methods: A Cell Counting Kit-8 assay was used to assess the viability of GC cells in vitro. Hoechst 33,258 staining and Annexin V-Phycoerythrin/7-Aminoactinomycin D were used to qualitatively and quantitatively detect apoptosis in GC cells. Intracellular reactive oxygen species (ROS) measurement and a mitochondrial membrane potential (MMP) assay kit were used to qualitatively and quantitatively reflect the function of mitochondria in GC cells. Western blotting was used to verify the above experimental results. A nude mouse xenograft tumor model was used to evaluate the anti-tumor efficacity of sodium and cisplatin butyrate in vivo.Results: Cisplatin combined with sodium butyrate increased the apoptosis of GC cells. In the nude mouse xenograft tumor model, sodium butyrate in combination with cisplatin markedly inhibited the growth of the tumor more effectively than either single agent. The combination of sodium butyrate and cisplatin increased the intracellular ROS, decreased the MMP, and suppressed the invasion and migration abilities of GC cells. Western blotting verified that the combination of sodium butyrate and cisplatin remarkably enhanced the levels of mitochondrial apoptosis-related pathway proteins.Conclusion: Sodium butyrate, a histone acetylation inhibitor produced by intestinal flora fermentation, combined with cisplatin enhanced the apoptosis of GC cells through the mitochondrial apoptosis-related pathway, which might be considered as a therapeutic option for GC.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Shuang Ba ◽  
Mingxi Qiao ◽  
Li Jia ◽  
Jiulong Zhang ◽  
Xiuli Zhao ◽  
...  

Cancer stem-like cells (CSLCs) have been considered to be one of the main problems in tumor treatment owing to high tumorigenicity and chemotherapy resistance. In this study, we synthesized a novel mitochondria-target derivate, triphentlphosphonium-resveratrol (TPP-Res), and simultaneously encapsulated it with doxorubicin (Dox) in pH-sensitive liposomes (PSL (Dox/TPP-Res)), to reverse chemotherapeutic resistance of CSLCs. PSL (Dox/TPP-Res) was approximately 165 nm in size with high encapsulation efficiency for both Dox and TPP-Res. Cytotoxicity assay showed that the optimal synergistic effect was the drug ratio of 1:1 for TPP-Res and Dox. Cellular uptake and intracellular trafficking assay indicated that PSL (Dox/TPP-Res) could release drugs in acidic endosomes, followed by mitochondrial targeting of TPP-Res and nucleus transports for Dox. The mechanisms for reversing the resistance in CSLCs were mainly attributed to a synergistic effect for reduction of mitochondrial membrane potential, activation of caspase cascade reaction, reduction of ATP level and suppression of the Wnt/β-catenin pathway. Further, in vivo assay results demonstrated that the constructed liposomes could efficiently accumulate in the tumor region and possess excellent antineoplastic activity in an orthotopic xenograft tumor model with no evident systemic toxicity. The above experimental results determined that PSL (Dox/TPP-Res) provides a new method for the treatment of heterogenecity tumors.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Ali H El-Far ◽  
Taher A Salaheldin ◽  
Kavitha Godugu ◽  
Noureldien HE Darwish ◽  
Shaker A Mousa

Aim: To investigate the anti-cancer potential of thymoquinone (TQ) and TQ nanoparticles (TQ-NPs) and their protection against doxorubicin (DOX)-induced cardiotoxicity. Methods: TQ-NPs were prepared by double emulsion method and characterized. The efficacy of TQ and TQ-DOX was studied against HCT116 and MDA-MB-231-Luc cancer cell lines in vitro and in a xenograft tumor model. Results: TQ and TQ + DOX increased Bax levels in HCT116 cells and decreased Bcl2 levels in MDA-MB-231-Luc cells. In the xenograft model, the TQ-NPs, with an average size of 218 nm, in combination with DOX, significantly reduced tumor size. The combination of TQ or TQ-NPs with DOX significantly reduced DOX-induced cardiotoxicity. Conclusion: Data suggest the promising role of TQ and TQ-NPs alone and with DOX for anti-cancer and cardiac protection benefits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Wang ◽  
Jingjing Dong ◽  
Xu Yuan ◽  
Haotian Wen ◽  
Linguangjin Wu ◽  
...  

Objective: C49 is a chalcone derivative. The aim of the current study is to illuminate the efficacy of C49 in reversing multidrug resistance (MDR) in MCF-7/DOX cells and its underlying molecular mechanism.Methods: The cytotoxic effects of C49 on MCF-7/DOX cells were evaluated by MTT assay using different concentration (0–250 μmol/L) of C49. Cell proliferation was evaluated by colony formation assay. Cell death was examined by morphological analysis using Hoechst 33,258 staining. Flow cytometry and immunofluorescence were utilized to evaluate the intracellular accumulation of doxorubicin (DOX) and cell apoptosis. The differentially expressed genns between MCF-7 and MCF-7/DOX cells were analyzed by GEO database. The expression of PI3K/Akt pathway proteins were assessed by Western blot The activities of C49 combined with DOX was evaluated via xenograft tumor model in female BALB/c nude mice.Results: C49 inhibited the growth of MCF-7 cells (IC50 = 59.82 ± 2.10 μmol/L) and MCF-7/DOX cells (IC50 = 65.69 ± 8.11 μmol/L) with dosage-dependent and enhanced the cellular accumulation of DOX in MCF-7/DOX cells. The combination of C49 and DOX inhibited cell proliferation and promoted cell apoptosis. MCF-7/DOX cells regained drug sensibility with the combination treatment through inhibiting the expression of P-gp, p-PI3K and p-Akt proteins. Meanwhile, C49 significantly increased the anticancer efficacy of DOX in vivo.Conclusion: C49 combined with DOX restored DOX sensitivity in MCF-7/DOX cells through inhibiting P-gp protein.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Xu ◽  
Mingjiong Zhang ◽  
Yue Li ◽  
Yu Wang ◽  
Kai Wang ◽  
...  

Abstract Background Autophagy is a double-edged sword during the initiation and progression of multiple tumors. The Hippo pathway effector YAP has been proved to be involved in autophagy processes. The present study aimed to investigate how YAP regulates cell proliferation via autophagy in lung adenocarcinomas (LUAD). Methods Data of LUAD chip GSE43458 was obtained from Gene Expression Omnibus (GEO). RT-qPCR and Western blot were performed to assess YAP expression in LUAD cell lines. CCK-8 assay, xenograft tumor model, immunochemistry and GFP-mRFP-LC3 fusion proteins were utilized to evaluate the effect of YAP on autophagy of LUAD cells in vitro and in vivo. Autophagy inhibitor treatment and rescue experiments were carried out to elucidate the mechanism by which YAP manipulates autophagy in LUAD cells. Results YAP was significantly overexpressed in samples of LUAD patients and its expression level is related to 5-year survival. YAP manipulated the proliferation and autophagy in A549 and H1299 LUAD cells. YAP could induce activation of Akt/mTOR signaling pathway via suppressing PTEN in a Hippo-pathway-dependent manner. 3-Methyladenine impeded autophagy flux and promoted the proliferation in vitro and in vivo. Conclusions Hippo pathway critical transcriptional coactivators YAP manipulates the proliferation of lung adenocarcinoma, which is regulated by PTEN/AKT/mTOR autophagic signaling.


Sign in / Sign up

Export Citation Format

Share Document