scholarly journals Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Beatriz Cesar ◽  
Ana Paula R. Abud ◽  
Carolina C. de Oliveira ◽  
Francolino Cardoso ◽  
Raffaello Popa Di Bernardi ◽  
...  

A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now reportin vivoimmunophenotyping of total bone marrow cells andex vivoeffects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measuredin vitro. Afterin vivotreatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects ofex vivoHCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were inducedin vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1337-1337
Author(s):  
Christine Victoria Ichim ◽  
Dzana Dervovic ◽  
David Koos ◽  
Marciano D. Reis ◽  
Alden Chesney ◽  
...  

Abstract The leukemia stem cell model suggests that elucidation of the genes that regulate growth ability within the leukemia cell hierarchy will have important clinical relevance. We showed that the expression of NR2F6 (EAR-2), is greater in clonogenic leukemia single cells than in leukemia cells that do not divide, and that this gene is over-expressed in patients with acute myeloid leukemia and myelodysplastic syndrome. In vivo, overexpression of EAR-2 using a retroviral vector in a chimeric mouse model leads to a condition that resembles myelodysplastic syndrome with hypercellular bone marrow, increased blasts, abnormal localization of immature progenitors, morphological dysplasia of the erythroid lineage and a competitive advantage over wild-type cells, that eventually leads to AML in a subset of the mice, or after secondary-transplantation. Interestingly, animals transplanted with bone marrow that over-expresses EAR-2 develop leukemia that is preceded by expansion of the stem cell compartment in the transplanted mice—suggesting that EAR-2 is an important regulator of hematopoietic stem cell differentiation. Here we report that over-expression of EAR-2 also has a profound effect on the differentiation of erythroid progenitor cells both in vitro and in vivo. Studies of the roles of EAR-2 in normal primary bone marrow cells in vitro showed that overexpression of EAR-2 profoundly impaired differentiation along the erythroid lineage. EAR-2 over-expressing bone marrow cells formed 40% fewer BFU-E colonies, but had greatly extended replating capacity in colony assays. While knockdown of EAR-2 increased the number of cells produced per BFU-E colony 300%. Normal mice transplanted with grafts of purified bone marrow cells that over-expressed EAR-2 developed a rapidly fatal leukemia characterized by pancytopenia, enlargement of the spleen, and infiltration of blasts into the spleen, liver and peripheral blood. Sick animals had profound reduction of peripheral blood cell counts, particularly anemia with a 55% reduction in hemoglobin levels. Anemia was evident even on gross inspection of the blood and the liver in EAR-2 overexpressing animals. Analysis of the leukemic cells revealed an erythroblastic morphology, with the immunophenotype lineageneg, CD71high, TER119med. Hence, we wondered weather EAR-2 caused leukemia by arresting erythroid progenitor cell differentiation. Examination of the bone marrow of pre-leukemic animals showed a four-fold increase in cells with a pro-erythroblastic immunophenotype (CD71highTER119med , region I), and a four-fold decrease in orthochromatophilic erythroblasts (CD71lowTER119high , region IV). We observed no change in the numbers of basophilic erythroblasts (CD71highTER119high , region II) or late basophilic and polychromatophilic erythroblasts (CD71medTER119high, region III). These data suggests that over-expression of EAR-2 blocks erythroid cell differentiation at the pro-erythroblastic stage. Since EAR-2 over-expressing recipients died within 4 week, we wanted to definitively test whether animals had compromised radioprotection. We showed that decreasing the size of the bone marrow graft, reduced survival of the EAR-2 over-expressing cohort by a week, but had no effect on control animals proving that EAR-2 over-expression has a profound effect on erythropoietic reconstitution in vivo. Mechanistically, we show that DNA binding is necessary for EAR-2 function, and that EAR-2 functions in an HDAC-dependent manner, regulating expression of several genes. Pre-leukemic pro-erythroblastic cells (CD71highTER119med) that over-expressed EAR-2 had lower expression of genes involved in erythroid differentiation such as GATA1, EBF1, inhibitor of NFKB (NFKBia), ETV6, CEBP/a, LMO2, and Nfe2, and increased expression of GATA2, GLI1, ID1 and PU.1 than GFP control pro-erythroblasts. These data establish that EAR-2 is a novel oncogene whose cellular function is to regulate terminal differentiation of erythroid cells at the proerythroblastic (CD71highTER119med) stage by deregulating gene expression necessary for erythroid differentiation. Disclosures Ichim: Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding. Koos:Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 150-159 ◽  
Author(s):  
Ben Fancke ◽  
Mark Suter ◽  
Hubertus Hochrein ◽  
Meredith O'Keeffe

The critical importance of plasmacytoid dendritic cells (pDCs) in viral infection, autoimmunity, and tolerance has focused major attention on these cells that are rare in blood and immune organs of humans and mice. The recent development of an Flt-3 ligand (FL) culture system of bone marrow cells has led to the simple generation of large numbers of pDCs that resemble their in vivo steady-state counterparts. The FL system has allowed unforeseen insight into the biology of pDCs, and it is assumed that FL is the crucial growth factor for these cells. Surprisingly we have found that a cell type with high capacity for interferon-α (IFN-α) production in response to CpG-containing oligonucleotides, a feature of pDCs, develop within macrophage–colony-stimulating factor (M-CSF)–generated bone marrow cultures. Analysis of this phenomenon revealed that M-CSF is able to drive pDCs as well as conventional DCs (cDCs) from BM precursor cells in vitro. Furthermore, application of M-CSF to mice was able to drive pDCs and cDCs development in vivo. It is noteworthy that using mice deficient in FL indicated that the M-CSF-driven generation of pDCs and cDCs in vitro and in vivo was independent of endogenous FL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2191-2191
Author(s):  
Ryosuke Shirasaki ◽  
Haruko Tashiro ◽  
Yoko Oka ◽  
Toshihiko Sugao ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 2191 Poster Board II-168 Aims: The stroma-forming cells in a bone marrow are derived from hematopoietic stem cells. We reported previously that non-adherent leukemia blast cells converted into myofibroblasts to create a microenvironment for proliferation of leukemia blasts in vitro. In this report we demonstrate that with severe combined immunodeficiency (SCID) mouse system chronic myelogenous leukemia (CML) cells are also differentiated into myofibroblasts to contribute to a bone marrow-stroma in vivo. Materials and Methods: Bone marrow cells were collected from informed CML patients, from which mononuclear cells were separated with density-gradient sedimentation method. After discarded an adherent cell-fraction, non-adherent mononuclear cells were injected to the priory 2.5 Gray-irradiated non-obese diabetes (NOD)/SCID mice intravenously. For the inactivation of NK cells, anti-Asialo GM1 antibody was injected intra-peritoneally prior to the transplantation, and on each 11th day thereafter. Blood was collected to monitor Bcr-Abl transcript, and mice were sacrificed after chimeric mRNA was demonstrated. Bone marrow cells were obtained, and sorted with anti-human CD133 antibody and -CD106 to select CML-derived human stromal myofibroblasts referred to the in vitro data. The isolated positive fraction was further cultured, and the biological and the molecular characteristics were analyzed. Results and Discussion: When non-adherent CML cells were transplanted to NOD/SCID mice, CML cells were engrafted after 2 months. In the murine bone marrow human stromal cells were identified, in which BCR and ABL gene was fused with FISH analysis. When the parental CML cells were cultured on the CML-derived myofibroblasts, CML cells grew extensively in a vascular endothelial growth factor-A-dependent fashion. These results indicate that CML cells can create their own microenvironment for proliferation in vivo. Disclosures: No relevant conflicts of interest to declare.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Koen E van der Bogt ◽  
Ahmad Y Sheikh ◽  
Sonja Schrepfer ◽  
Grant Hoyt ◽  
Feng Cao ◽  
...  

Introduction: A comparative analysis of the efficacy of different cell candidates for the treatment of heart disease remains to be described. This study aimed to evaluate the therapeutic efficacy of 4 cell types in a murine model of myocardial infarction. Methods: Bone-marrow cells (MN), mesenchymal cells (MSC), skeletal myoblasts (SkMb) and fibroblasts (Fibro) were isolated from male L2G transgenic mice (FVB background) that express firefly luciferase (Fluc) and green fluorescence protein (GFP). Cells were characterized by flow cytometry, bioluminescence imaging (BLI), and luminometry. Female FVB mice (n=60) underwent LAD ligation and were randomized into 5 groups to intramyocardially receive one cell type (5 × 10 5 ) or PBS. Cell survival was measured in vivo by BLI and ex vivo by TaqMan PCR at week 6. Cardiac function was assessed by echocardiography and invasive hemodynamic measurements at week 6. Results: Fluc expression correlated with cell number in all groups (r 2 >0.93). In vivo BLI revealed donor cell death of MSC, SkMb, and Fibro within 3 weeks after transplantation. By contrast, cardiac signal was still present after 6 weeks in the MN group, as confirmed by PCR (p<0.01). Echocardiography showed significant preservation of fractional shortening in the MN group compared to controls (p<0.05). Measurements of left ventricular end-systolic/diastolic volume revealed the least amount of ventricular dilatation occurred in the MN group (p<0.05). Conclusion: This is the first study to directly compare a variety of cell candidates for myocardial therapy and indicates that MN exhibit a favorable survival pattern, which translates into preservation of cardiac function.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
XG Zhang ◽  
R Bataille ◽  
M Jourdan ◽  
S Saeland ◽  
J Banchereau ◽  
...  

The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the growth of multiple myeloma (MM) was investigated in 21 patients with MM. In 17 patients with proliferating myeloma cells in vivo, recombinant GM-CSF significantly increased the endogenous-IL-6-mediated spontaneous myeloma cell proliferation occurring in 5-day cultures of tumor cells in vitro (P less than .01). Furthermore, GM-CSF was detected in 5-day culture supernatants of myeloma bone marrow cells. This endogenous GM-CSF was produced by the myeloma bone marrow microenvironment but not by myeloma cells and contributed to the spontaneous myeloma-cell proliferation observed in 5-day cultures. In fact, this proliferation was partially blocked (67%) by anti-GM-CSF monoclonal antibodies. The stimulatory effect of rGM-CSF was mediated through IL-6 because it was abrogated by anti-IL-6 monoclonal antibodies. rGM-CSF did not reproducibly increase the endogenous IL-6 production in short-term cultures of bone marrow cells of MM patients. Using an IL-6-dependent myeloma cell line (XG-1 cell line), rGM-CSF was shown to act directly on myeloma cells stimulating by twofold their IL- 6 responsiveness. rGM-CSF did not induce any IL-6 production in XG-1 cells, nor was it able to sustain their growth alone. Although no detectable GM-CSF levels were found in the peripheral or bone marrow blood of MM patients, it is possible that GM-CSF, produced locally by the tumoral environment, enhances the IL-6 responsiveness of myeloma cells in vivo in a way similar to that reported here in vitro.


Blood ◽  
2005 ◽  
Vol 106 (4) ◽  
pp. 1147-1153 ◽  
Author(s):  
Ilze Bot ◽  
Jian Guo ◽  
Miranda Van Eck ◽  
Peter J. Van Santbrink ◽  
Pieter H. E. Groot ◽  
...  

AbstractA major barrier in hematopoietic gene function studies is posed by the laborious and time-consuming generation of knockout mice with an appropriate genetic background. Here we present a novel lentivirus-based strategy for the in situ generation of hematopoietic knockdowns. A short hairpin RNA (shRNA) was designed targeting murine CC-chemokine receptor 2 (CCR2), which was able to specifically blunt CCR2 expression at the mRNA, protein, and functional levels in vitro. Reconstitution of irradiated recipient mice with autologous bone marrow that had been ex vivo transduced with shRNA lentivirus led to persistent down-regulation of CCR2 expression, which translated into a 70% reduction in CCR2-dependent recruitment of macrophages to an inflamed peritoneal cavity without noticeable side effects on related chemokine receptors or general inflammation status. These findings clearly demonstrate the potential of shRNA lentivirus–infected bone marrow transplantation as a rapid and effective method to generate hematopoietic knockdowns for leukocyte gene function studies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1568-1568
Author(s):  
Thomas Cluzeau ◽  
Guillaume Robert ◽  
Jean Michel Karsenti ◽  
Frederic Luciano ◽  
Nicolas Mounier ◽  
...  

Abstract Background AZA is currently the first line treatment for intermediate-2 and high-risk IPSS myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) with 20 to 30% of marrow blasts. We have previously reported that cells from AZA-resistant patients exhibit impaired mitochondrial apoptosis but maintain functional autophagy (Cluzeau et al. Cell Cycle 2011, Oncotarget 2012). Acadesine (ACA), also known as AICAR or Aica-Riboside is a nucleoside analogue that has been shown to trigger autophagy in AZA resistant cells. Methods In vitro effect: We used an AZA-resistant MDS/AML cell line (SKM1-R) as a tool to decipher AZA resistance. Cells were treated with increasing doses of ACA (0.5-2mM) or with a maximally efficient dose of AZA (1µM) and induction of cell death was assessed by cell metabolism and Propidium Iodide (PI) assays. In vivo effect: The effect of ACA was also assessed in a mouse xenograft model of SKM1-R cells. When tumors reached 100 mm3, mice were treated daily with an intra-peritoneal injection of the vehicle alone, 5 mg/kg AZA, or 200 or 400 mg/kg ACA. Ex vivo effect: We finally used primary bone marrow cells from AZA-resistant MDS or AML-resistant patients (n=12) (clinicalTrials.gov identifier: NCT01210274) to perform cell metabolism assays. Results In vitro effect: Only a slight decrease of cell metabolism and a moderate increase of PI staining were detected following stimulation with 1µM AZA confirming the resistance of SKM1-R cells to AZA. In identical conditions, ACA induced a robust increase of cell death in AZA-resistant cells with a maximal effect at 2mM. Induction of cell death by ACA was independent of apoptosis but relied on autophagy induction, as shown by the conversion of LC3-I to LC3-II and an increase of cathepsin B activity, that are respectively early and late markers of autophagy. In vivo effect: As expected, AZA failed to trigger tumor regression of AZA-resistant SKM1-R cells in vivo compared to vehicle alone, whereas ACA was found to induce a statistically significant inhibition of tumor growth at both tested concentrations. Ex vivo effect:Bonferroni’s Multiple Comparison Test performed in 6 AZA-resistant MDS patients showed significant reduction of cell metabolism between ACA and untreated cells (66% and 78% at 1 and 2 mM of ACA) and between ACA and AZA-treated cells (60% and 72% at 1 and 2mM of ACA,). Identical results were found in 6 AML AZA-resistant AML patients with a significant reduction of cell metabolism between ACA and untreated cells (63% and 81% at 1 and 2mM of ACA) and ACA and AZA-treated cells (56% and 75% at 1 and 2 mM of ACA). Conclusion Our results show the high efficacy of Acadesine in vitro, in vivo and ex vivo in AZA-resistant MDS and AML cell lines and patient’s bone marrow cells. Induction of cell death by autophagy seems to be the main mechanism by which ACA circumvents AZA resistance in MDS and AML cells. These encouraging results prompted us to initiate a multicenter phase I/II clinical trial with the French MDS Group (GFM) to assess the safety and efficacy of ACA in MDS and AML patients with 20 to 30% of marrow blasts not responding or relapsing after AZA treatment (clinicalTrials.gov identifier: NCT01813838). Disclosures: Cluzeau: Advancell: Research Funding. Robert:Advancell: Research Funding. Auberger:Advancell: Research Funding.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
XG Zhang ◽  
R Bataille ◽  
M Jourdan ◽  
S Saeland ◽  
J Banchereau ◽  
...  

Abstract The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the growth of multiple myeloma (MM) was investigated in 21 patients with MM. In 17 patients with proliferating myeloma cells in vivo, recombinant GM-CSF significantly increased the endogenous-IL-6-mediated spontaneous myeloma cell proliferation occurring in 5-day cultures of tumor cells in vitro (P less than .01). Furthermore, GM-CSF was detected in 5-day culture supernatants of myeloma bone marrow cells. This endogenous GM-CSF was produced by the myeloma bone marrow microenvironment but not by myeloma cells and contributed to the spontaneous myeloma-cell proliferation observed in 5-day cultures. In fact, this proliferation was partially blocked (67%) by anti-GM-CSF monoclonal antibodies. The stimulatory effect of rGM-CSF was mediated through IL-6 because it was abrogated by anti-IL-6 monoclonal antibodies. rGM-CSF did not reproducibly increase the endogenous IL-6 production in short-term cultures of bone marrow cells of MM patients. Using an IL-6-dependent myeloma cell line (XG-1 cell line), rGM-CSF was shown to act directly on myeloma cells stimulating by twofold their IL- 6 responsiveness. rGM-CSF did not induce any IL-6 production in XG-1 cells, nor was it able to sustain their growth alone. Although no detectable GM-CSF levels were found in the peripheral or bone marrow blood of MM patients, it is possible that GM-CSF, produced locally by the tumoral environment, enhances the IL-6 responsiveness of myeloma cells in vivo in a way similar to that reported here in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2855-2855
Author(s):  
Gorazd Krosl ◽  
Marie-Pier Giard ◽  
Jana Krosl ◽  
R. Keith Humphries ◽  
Guy Sauvageau ◽  
...  

Abstract The clinical application of therapeutic protocols depending on hematopoietic stem cell (HSC) transplantation for long term reconstitution with donor-derived HSCs, particularly in patients previously exposed to intensive radiation or chemo-therapy, or when grafts are purged of infiltrating malignant or alloreactive T cells, can be severely hampered by limited numbers of HSCs in the graft. In mouse bone marrow transplantation models, engineered overexpression of HOXB4 has been one of the most potent stimulator of HSC expansion identified to date. The simple addition of soluble recombinant TAT-HOXB4 protein was also recently reported to enable rapid in vitro expansion of mouse HSCs that retain their in vivo proliferation and differentiation capacity. To test the feasibility of using TAT-HOXB4 as a stimulator of human HSC expansion, we performed a series of experiments using CD34+ populations isolated from healthy volunteers. The CD34+ cell populations were cultured in X-Vivo medium supplemented with Stem Cell Factor (300 ng/mL) and G-CSF (50 ng/mL) in the presence or absence of TAT-HOXB4 protein (50 nmol/L) for 4 days. In response to TAT-HOXB4, total numbers of mononuclear cells demonstrated a modest but distinct 2-fold increase compared to controls. TAT-HOXB4 treatment had the largest proliferation enhancing effect on more primitive cell populations such as CFU-GEMM, BFU-E and BFU-Meg, whose numbers increased 26.5 ± 1.4 fold (mean±S.D.), 2.2 ± 0.7 fold and 2.1 ± 0.2 fold, respectively, over their input values, and 19.1 ± 1.3 fold, 2.7 ± 0.7 and 31 ± 3.4 fold, respectively, compared to growth factor only controls. In response to TAT-HOXB4, the total numbers of CD34+CD38-Lin- cells increased 2.1 ± 0.7 fold above their starting numbers compared to a 1.5 ± 0.5 fold loss of this population in control cultures. HSC numbers were enumerated at the beginning, and after a 4-day TAT-HOXB4 treatment period using a NOD/SCID repopulation assay. In response to 50 nM TAT-HOXB4, NOD/SCID repopulating cell (SRC) numbers increased ~2-fold over their input values, compared to a 9-fold loss in control cultures without TAT-HOXB4. These results show that recombinant TAT-HOXB4 protein has the capacity to rapidly induce ex vivo expansion of primitive human bone marrow populations, and suggest that optimization of treatment conditions will rapidly lead to clinically useful expansion of human HSCs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1621-1621
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Toshihiko Sugao ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 1621 Poster Board I-647 Aims: Cancer stem cell theory has been developed, and whose precise characteristics have been reported. However, there have been no reports on the differentiation of cancer stem cells into the environmental stromal cells. We reported previously that non-adherent acute myelogenous leukemia (AML) cells were differentiated into myofibroblasts to create a microenvironment for proliferation of AML blasts in vitro. In this report we demonstrate that with severe combined immunodeficiency (SCID) mouse system AML blast cells also convert to myofibroblasts to form stroma in vivo. Materials and Methods Bone marrow cells were collected from informed AML (M2) patients who had chromosomal translocation of RUNX1 and ETO, from which mononuclear cells were separated with density-gradient sedimentation method. After discarded an adherent cell-fraction, the non-adherent mononuclear cells were injected to the 3.0 Gray-irradiated non-obese diabetes (NOD)/SCID mouse intravenously. For the inactivation of NK cells, anti-Asialo GM1 antibody was injected intra-peritoneally prior to the transplantation, and on each 11th day thereafter. Blood was collected to monitor Runx1 and ETO fusion transcript, and mice were sacrificed after chimeric mRNA was observed. Bone marrow cells were obtained, and sorted with anti-human CD133 antibody and -CD106 to select AML-derived human stromal myofibroblasts referred to the in vitro data. The isolated positive fraction was further cultured, and the biological and the molecular characteristics were analyzed. Results and Discussion When non-adherent AML (M2) blast cells were transplanted to NOD/SCID mice, cells were engrafted after 10 weeks. In murine bone marrow cells human stromal cells were identified, in which RUNX1 and ETO gene was fused with FISH analysis. When the parental AML blast cells were cultured on the expanded AML-derived myofibroblasts, AML cells grew extensively. These results indicate that AML cells can create their own microenvironment for proliferation in vivo. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document