scholarly journals N797 Therapeutic drug monitoring after thiopurine initiation improves drug efficacy

2017 ◽  
Vol 11 (suppl_1) ◽  
pp. S489-S490
Author(s):  
W. Dijkstra-Heida ◽  
C. Smids ◽  
M. van Luin ◽  
G. Huisman-de Waal ◽  
M. de Leest ◽  
...  
F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1832
Author(s):  
Angela W.S. Fung ◽  
Michael J. Knauer ◽  
Ivan M. Blasutig ◽  
David A. Colantonio ◽  
Vathany Kulasingam

Background:  Therapeutic drug monitoring of immunosuppressant drugs are used to monitor drug efficacy and toxicity and to prevent organ transplant rejection. This study evaluates the analytical performance of semi-automated electrochemiluminescence immunoassays (ECLIA) for cyclosporine (CSA), tacrolimus (TAC) and sirolimus (SRL) on the Roche cobas e 411 analyzer at a major transplant hospital to assess method suitability and limitations. Methods: Residual whole blood samples from patients undergoing immunosuppressant therapy were used for evaluation. Imprecision, linearity, functional sensitivity, method comparisons and lot-to-lot comparisons were assessed. Results: Total imprecision ranged from 3.3 to 7.1% for CSA, 3.9 to 9.4% for TAC, and 4.6 to 8.2% for SRL. Linearity was verified from 30.0 to 960.9 μg/L for CSA, from 1.1 to 27.1 μg/L for TAC, and from 0.5 to 32.3 µg/L for SRL. The functional sensitivity met the manufacturer’s claims and was determined to be <6.5 μg/L for CSA, 1.1 μg/L for TAC, and <0.1 µg/L for SRL (CV≤20%). Deming regression analysis of method comparisons with the ARCHITECT immunoassay yielded slopes of 0.917 (95%CI: 0.885-0.949) and r of 0.985 for CSA, 0.938 (95%CI: 0.895-0.981) and r of 0.974 for TAC, and 0.842 (0.810-1.110) and r of 0.982 for SRL. Deming regression analysis of comparisons with the LC–MS/MS method yielded slopes of 1.331 (95%CI: 1.167-1.496) and r of 0.969 for CSA, 0.924 (95%CI: 0.843-1.005) and r of 0.984 for TAC, and 0.971 (95%CI: 0.913-1.030) and r of 0.993 for SRL. Conclusions: The cobas e 411 ECLIA for CSA, TAC, and SRL have acceptable precision, linearity, and functional sensitivity. The method comparisons correlated well with the ARCHITECT immunoassay and LC–MS/MS and is fit for therapeutic drug monitoring


2017 ◽  
Vol 35 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
Ann Gils

Background: Biologicals provide a tight disease control but not all patients respond favourably to treatment. Some patients do not respond at all (primary non-responders), while other patients respond initially but show loss of response over time (secondary non-responders). Drug concentrations in the serum of patients can be monitored and correlated with biological, clinical or endoscopic response. Therapeutic thresholds have been defined for infliximab and adalimumab. The European Medicines Agency has approved 3 biosimilars of infliximab and new biosimilars are waiting approval. Key Messages: Distinguishing primary non-responders from patients with insufficient drug exposure during induction through drug serum concentration determination will improve drug efficacy. Current algorithms to guide treatment of patients with secondary loss of response take into account that patients with high titers of anti-drug antibodies (ADA) do not respond to dose intensification and that patients with therapeutic drug concentrations cannot be switched to biologicals within class. For patients in clinical remission, the cost of biological treatment can be decreased by dose tapering patients with supra-therapeutic concentrations and/or by switching patients with adequate drug concentrations and no formation of ADA to biosimilar, whereas efficacy can be increased by dose-intensifying patients with low or transient ADA and by switching patients with persistent ADA to biologicals within or out-off class. Conclusions: As an objective tool, therapeutic drug monitoring can identify patients who are eligible for dose tapering, intensification of treatment, cessation of treatment, switching within- or out-of-class and switching to biosimilar.


2016 ◽  
Vol 16 (2) ◽  
pp. 33-37
Author(s):  
Alexandra NG Hoi-Yan ◽  
Chi Chiu Mok

Abstract The ultimate goal of treating rheumatic disease is to achieve rapid suppression of inflammation, while at the same time minimizing the toxicities from rheumatic drugs. Different patients have different individual pharmacokinetics that can affect the drug level. Moreover, different factors, such as renal function, age or even different underlying diseases, can affect the drug level. Therefore, giving the same dosage of drugs to different patients may result in different drug levels. This article will review the usefulness of therapeutic drug monitoring in maximizing drug efficacy, while reducing the risk of toxicities in Hydroxychloroquine, Mycophenolate Mofetil, Tacrolimus and Tumor Necrosis Factor inhibitors (TNF Inhibitors).


Author(s):  
Nahed El-Najjar ◽  
Jonathan Jantsch ◽  
André Gessner

AbstractCancer remains a leading cause of mortality and morbidity worldwide. In addition to organ failure, the most frequent reasons for admission of cancer patients to intensive care units (ICU) are: infections and sepsis. As critically ill, the complexity of the health situation of cancer patients renders the standard antimicrobial regimen more complex and even inadequate which results in increased mortality rates. This is due to pathophysiological changes in the volume of distribution, increased clearance, as well as to organ dysfunction. While in the former cases a decrease in drug efficacy is observed, the hallmark of the latter one is overdosing leading to increased toxicity at the expense of efficacy. Furthermore, an additional risk factor is the potential drug-drug interaction between antibiotics and antineoplastic agents. Therefore, therapeutic drug monitoring (TDM) is a necessity to improve the clinical outcome of antimicrobial therapy in cancer patients. To be applied in routine analysis the method used for TDM should be cheap, fast and highly accurate/sensitive. Furthermore, as ICU patients are treated with a cocktail of antibiotics the method has to cover the simultaneous analysis of antibiotics used as a first/second line of treatment. The aim of the current review is to briefly survey the pitfalls in the current antimicrobial therapy and the central role of TDM in dose adjustment and drug-drug interaction’s evaluation. A major section is dedicated to summarize the currently published analytical methods and to shed light on the difficulties and potential problems that can be encountered during method development.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1832 ◽  
Author(s):  
Angela W.S. Fung ◽  
Michael J. Knauer ◽  
Ivan M. Blasutig ◽  
David A. Colantonio ◽  
Vathany Kulasingam

Background:  Therapeutic drug monitoring of immunosuppressant drugs are used to monitor drug efficacy and toxicity and to prevent organ transplantation rejection. This study evaluates the analytical performance of semi-automated electrochemiluminescence immunoassays (ECLIA) for cyclosporine (CSA), tacrolimus (TAC) and sirolimus (SRL) on the Roche cobas e 411 analyzer at a major transplant hospital to identify method suitability and limitations. Methods: Residual whole blood samples from patients undergoing immunosuppressant therapy were used for evaluation. Experiments included imprecision, linearity, functional sensitivity, method comparisons and lot-to-lot assessments. Results: Total imprecision ranged from 3.3 to 7.1% for CSA, 3.9 to 9.4% for TAC, and 4.6 to 8.2% for SRL. Linearity was verified from 30.0 to 960.9 μg/L for CSA, from 1.1 to 27.1 μg/L for TAC, and from 0.5 to 32.3 µg/L for SRL. The functional sensitivity met the manufacturer’s claims and was determined to be <6.5 μg/L for CSA, 1.1 μg/L for TAC, and <0.1 µg/L for SRL (CV≤20%). Deming regression analysis of method comparisons with the ARCHITECT immunoassay yielded slopes of 0.917 (95%CI: 0.885-0.949) and r of 0.985 for CSA, 0.938 (95%CI: 0.895-0.981) and r of 0.974 for TAC, and 0.842 (0.810-1.110) and r of 0.982 for SRL. Deming regression analysis of comparisons with the LC–MS/MS method yielded slopes of 1.331 (95%CI: 1.167-1.496) and r of 0.969 for CSA, 0.924 (95%CI: 0.843-1.005) and r of 0.984 for TAC, and 0.971 (95%CI: 0.913-1.030) and r of 0.993 for SRL. Conclusions: The cobas e 411 ECLIA for CSA, TAC, and SRL have acceptable precision, linearity, and functional sensitivity. The method comparisons correlated well with the ARCHITECT immunoassay and LC–MS/MS and is fit for therapeutic drug monitoring.


Author(s):  
Thomas J Dilworth ◽  
Lucas T Schulz ◽  
Warren E Rose

Abstract Vancomycin is commonly prescribed to hospitalized patients. Decades of pharmacokinetic/pharmacodynamic research culminated in recommendations to monitor the ratio of the area under the concentration-time curve (AUC) to the minimum inhibitory concentration in order to optimize vancomycin exposure and minimize toxicity in the revised 2020 guidelines. These guideline recommendations are based on limited data without high-quality evidence and limitations in strength. Despite considerable effort placed on vancomycin therapeutic drug monitoring (TDM), clinicians should recognize that the majority of vancomycin use is empiric. Most patients prescribed empiric vancomycin do not require it beyond a few days. For these patients, AUC determinations during the initial days of vancomycin exposure are futile. This added workload may detract from high-level patient care activities. Loading doses likely achieve AUC targets, so AUC monitoring after a loading dose is largely unnecessary for broad application. The excessive vancomycin TDM for decades has been propagated with limitations in evidence, and it should raise caution on contemporary vancomycin TDM recommendations.


2018 ◽  
Vol 75 (5) ◽  
pp. 316-328
Author(s):  
Christian Ansprenger ◽  
Emanuel Burri

Zusammenfassung. Die Diagnose und auch die Überwachung von chronisch entzündlichen Darmerkrankungen ruht auf mehreren Säulen: Anamnese, körperliche Untersuchung, Laborwerte (im Blut und Stuhl), Endoskopie, Histologie und Bildgebung. Die Diagnose kann nicht anhand eines einzelnen Befundes gestellt werden. In den letzten Jahren hat sich das Therapieziel weg von klinischen Endpunkten hin zu endoskopischen und sogar histologischen Endpunkten entwickelt. Für einige dieser neuen Therapieziele existiert allerdings noch keine allgemein gültige Definition. Regelmässige Endoskopien werden von Patienten schlecht toleriert, weshalb Surrogat-Marker wie Calprotectin untersucht wurden und eine gute Korrelation mit der mukosalen Entzündungsaktivität nachgewiesen werden konnte. Entsprechend zeigte sich bei Morbus Crohn eine Algorithmus-basierte Therapiesteuerung – unter anderem basierend auf Calprotectin – einer konventionellen Therapiesteuerung überlegen. Die Überwachung der medikamentösen Therapie («Therapeutic Drug Monitoring» [TDM]) ist ein zweites Standbein des Monitoring von chronisch entzündlichen Darmerkrankungen. Mit zunehmendem Einsatz vor allem der Biologika-Therapien wurden sowohl reaktives TDM (in Patienten mit klinischem Rezidiv) als auch proaktives TDM (in Patienten in Remission / stabiler Erkrankung) untersucht und haben (teilweise) Eingang in aktuelle Richtlinien gefunden. Zukünftige Studien werden die vorgeschlagenen Therapieziele besser definieren und den Nutzen der medikamentösen Therapieüberwachung auf den Krankheitsverlauf weiter untersuchen müssen.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
L Mercolini ◽  
G Fulgenzi ◽  
M Melis ◽  
G Boncompagni ◽  
LJ Albers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document