Host Specificity of Coniatus tamarisci (Coleoptera: Curculionidae) from France: Potential Biological Control Agent of Tamarix spp. in the United States

1997 ◽  
Vol 26 (2) ◽  
pp. 349-356 ◽  
Author(s):  
Luca Fornasari
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander M. Gaffke ◽  
Sharlene E. Sing ◽  
Tom L. Dudley ◽  
Daniel W. Bean ◽  
Justin A. Russak ◽  
...  

Abstract The northern tamarisk beetle Diorhabda carinulata (Desbrochers) was approved for release in the United States for classical biological control of a complex of invasive saltcedar species and their hybrids (Tamarix spp.). An aggregation pheromone used by D. carinulata to locate conspecifics is fundamental to colonization and reproductive success. A specialized matrix formulated for controlled release of this aggregation pheromone was developed as a lure to manipulate adult densities in the field. One application of the lure at onset of adult emergence for each generation provided long term attraction and retention of D. carinulata adults on treated Tamarix spp. plants. Treated plants exhibited greater levels of defoliation, dieback and canopy reduction. Application of a single, well-timed aggregation pheromone treatment per generation increased the efficacy of this classical weed biological control agent.


2018 ◽  
Vol 65 ◽  
pp. 111-130 ◽  
Author(s):  
Fatemeh Ganjisaffar ◽  
Elijah J. Talamas ◽  
Marie-Claude Bon ◽  
Brian V. Brown ◽  
Lisa Gonzalez ◽  
...  

TrissolcushyalinipennisRajmohana & Narendran is an Old World egg parasitoid ofBagradahilaris(Burmeister). Its potential as a classical biological control agent in the United States has been under evaluation in quarantine facilities since 2014. A survey of resident egg parasitoids using fresh sentinelB.hilariseggs in Riverside, California, revealed thatT.hyalinipennisis present in the wild. Four cards with parasitized eggs were recovered, from which one yielded a single liveT.hyalinipennisand two unidentified dead wasps (Scelionidae), and three yielded twenty liveTrissolcusbasalis(Wollaston) and one dead wasp. Subsequently, samples from Burbank, California, collected with a Malaise trap as part of the BioSCAN project, yielded five females ofT.hyalinipennis. It is presumed that the introduction ofT.hyalinipennisto this area was accidental. Surveys will be continued to evaluate the establishment ofT.hyalinipennisas well as the presence of other resident parasitoid species.


Zootaxa ◽  
2009 ◽  
Vol 2083 (1) ◽  
pp. 1-18 ◽  
Author(s):  
I. K. LOPATIN ◽  
A. S. KONSTANTINOV

Two new genera from China (Taumaceroides Lopatin and Yunnaniata Lopatin) and 11 new species (Smaragdina quadrimaculata Lopatin, S. oblongum Lopatin, Hyphaenia volkovitshi Lopatin, Arthrotus daliensis Lopatin, Taumaceroides sinicus Lopatin, Yunnaniata konstantinovi Lopatin, Calomicrus yunnanus Lopatin, C. minutissimus Lopatin, Hermaeophaga belkadavi Konstantinov, H. dali Konstantinov from China, and H. korotyaevi Konstantinov from South Korea) are described and illustrated. A key to Hermaeophaga species of Eurasia is presented. Since Hermaeophaga dali was collected feeding on Paederia foetida L. (Rubiaceae), which is an invasive noxious weed in the United States, this species has potential as a biological control agent of this weed.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Thao D. Tran ◽  
Celia Del Cid ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
Jeffery A. McGarvey

ABSTRACT Listeria monocytogenes is a foodborne pathogen that causes high rates of hospitalization and mortality in people infected. Contamination of fresh, ready to eat produce by this pathogen is especially troubling because of the ability of this bacterium to grow on produce under refrigeration temperatures. In this study, we created a library of over 8,000 plant phyllosphere-associated bacteria and screened them for the ability to inhibit the growth of L. monocytogenes in an in vitro fluorescence-based assay. One isolate, later identified as Bacillus amyloliquefaciens ALB65, was able to inhibit the fluorescence of L. monocytogenes by >30-fold in vitro. B. amyloliquefaciens ALB65 was also able to grow, persist, and reduce the growth of L. monocytogenes by >1.5 log CFU on cantaloupe melon rinds inoculated with 5 × 103 CFU at 30°C and was able to completely inhibit its growth at temperatures below 8°C. DNA sequence analysis of the B. amyloliquefaciens ALB65 genome revealed six gene clusters that are predicted to encode genes for antibiotic production; however, no plant or human virulence factors were identified. These data suggest that B. amyloliquefaciens ALB65 is an effective and safe biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons and possibly other types of produce. IMPORTANCE Listeria monocytogenes is estimated by the Centers for Disease Control and Prevention and the U.S. Food and Drug Administration to cause disease in approximately 1,600 to 2,500 people in the United States every year. The largest known outbreak of listeriosis in the United States was associated with intact cantaloupe melons in 2011, resulting in 147 hospitalizations and 33 deaths. In this study, we demonstrated that Bacillus amyloliquefaciens ALB65 is an effective biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons under both pre- and postharvest conditions. Furthermore, we demonstrated that B. amyloliquefaciens ALB65 can completely inhibit the growth of L. monocytogenes during cold storage (<8°C).


Entomophaga ◽  
1994 ◽  
Vol 39 (3-4) ◽  
pp. 377-384 ◽  
Author(s):  
G. Campobasso ◽  
R. Sobhian ◽  
L. Knutson ◽  
A. C. Pastorino ◽  
P. H. Dunn

EDIS ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. 6
Author(s):  
Eutychus Kariuki ◽  
Carey Minteer

Neochetina bruchi Hustache is commonly referred to as the chevroned water hyacinth weevil and is a weed biological control agent used to manage water hyacinth, Pontederia crassipes Mart. [formely Eichhornia crassipes (Mart.) Solms (Pellegrini et al. 2018)], in more than 30 countries (Winston et al. 2014). Imported from Argentina, the insect was first introduced into the United States in Florida in 1974 and released in Louisiana later in 1974 (Manning 1979), Texas 1980, and California 1982 to 1983 (Winston et al. 2014). Now Neochetina bruchi occurs throughout the Gulf Coast States (Winston et al. 2014). The target weed of Neochetina bruchi, water hyacinth, is an invasive aquatic plant in the United States and is included on Florida’s list of prohibited aquatic plants. Neochetina bruchi is among four species of insect biological control agents that have been introduced into the United States to manage water hyacinth. The other three species include a weevil, Neochetina eichhorniae; a moth, Niphograptaalbiguttalis; and a planthopper, Megamelus scutellaris, which were introduced into the United States in 1972, 1977, and 2010, respectively (Tipping et al. 2014). Although the larvae and pupae of Neochetina bruchi and Neochetina eichhorniae have similar appearance and behavior and can be difficult to differentiate by casual observation (Deloach and Cordo 1976), the adult stages of the two species of water hyacinth weevils can be distinguished relatively easily based on the color patterns on their elytra (hardened fore wings).


Sign in / Sign up

Export Citation Format

Share Document