Invasive Saltcedar and Drought Impact Ant Communities and Isopods in South-Central Nebraska

2020 ◽  
Vol 49 (3) ◽  
pp. 607-614 ◽  
Author(s):  
W Wyatt Hoback ◽  
Jessica Jurzenski ◽  
Kerri M Farnsworth-Hoback ◽  
Karl A Roeder

Abstract The establishment and spread of non-native species often results in negative impacts on biodiversity and ecosystem function. Several species of saltcedar, Tamarix spp. L., have been recently naturalized in large portions of the United States where they have altered plant and animal communities. To test the prediction that saltcedar negatively affects invertebrates, we measured ant genera diversity and the activity density of the exotic isopod Armadillidium vulgare Latrielle (Isopoda: Oniscoidea) for 2 yr using pitfall traps located within 30 5-m2 plots with or without saltcedar at a south-central Nebraska reservoir. From 2005 to 2006, we collected 10,837 ants representing 17 genera and 4,953 A. vulgare. Per plot, the average number of ant genera was not different between saltcedar (x̅ = 3.9) and non-saltcedar areas ( x̅ = 3.9); however, saltcedar plots were compositionally different and more similar from plot to plot (i.e., they had lower beta diversity than control plots) in 2005, but not in 2006. Isopods were likewise temporally affected with higher activity density (+89%) in control plots in 2005, but higher activity density (+27%) in saltcedar plots in 2006. The observed temporal differences occurred as the drought that initially enabled the saltcedar invasion became less severe in 2006. Combined, our results suggest that invertebrate groups like ants, which are generally omnivorous, may be better equipped than more specialized taxa like detritivores to withstand habitat changes due to invasions by non-native species, especially during extreme weather events such as prolonged droughts.

Author(s):  
Deborah M. Finch ◽  
Jack L. Butler ◽  
Justin B. Runyon ◽  
Christopher J. Fettig ◽  
Francis F. Kilkenny ◽  
...  

AbstractMean surface temperatures have increased globally by ~0.7 °C per century since 1900 and 0.16 °C per decade since 1970 (Levinson and Fettig 2014). Most of this warming is believed to result from increases in atmospheric concentrations of greenhouse gases produced by human activity. Temperature increases have been greater in winter than in summer, and there is a tendency for these increases to be manifested mainly by changes in minimum (nighttime low) temperatures (Kukla and Karl 1993). Changes in precipitation patterns have also been observed, but are more variable than those of temperature. Even under conservative emission scenarios, future climatic changes are likely to include further increases in temperature with significant drying (drought) in some regions and increases in the frequency and severity of extreme weather events (IPCC 2007). For example, multimodel means of annual temperature from climate projections predict an increase of 3–9 °C in the United States over the next century combined with reductions in summer precipitation in certain areas (Walsh et al. 2014). These changes will affect invasive species in several ways. Furthermore, climate change may challenge the way we perceive and consider nonnative invasive species, as impacts to some will change and others will remain unaffected; other nonnative species are likely to become invasive; and native species are likely to shift their geographic ranges into novel habitats.


2020 ◽  
Author(s):  
Evan Ruzanski ◽  
Venkatachalam Chandrasekar ◽  
Ivan Arias

<p>The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) international field campaign occurred June 1, 2018, to April 30, 2019. This campaign was comprised of more than 150 scientists from 10 organizations. Data was collected to investigate different phases of the life cycle of thunderstorms that occur in Argentina to better understand the physical mechanisms that cause the initiation and growth of organized convective systems in some of the most intense storms on the planet. The main focus of the project was to develop new conceptual models for forecasting extreme weather events that will hopefully lead to reductions in future loss of life and property.</p><p>This presentation shows the performance of a recently developed model for estimating ice mass aloft, a key component in the atmospheric electrification process, and a method for nowcasting lightning activity using C-band weather radar and Global Lightning Dataset (GLD360) data from RELAMPAGO. This nowcasting method uses a grid-based approach to make specific forecasts of lightning in space and time. The method estimates ice mass aloft in the region where electrification occurs using a numerical optimization approach to essentially reframe a simplified bulk microphysical model into a completely data-driven model. Previous results using WSR-88D S-band radar data in the United States showed that using this model significantly improved nowcasts of first-flash lightning occurrence versus the traditional weather radar-based ice mass estimator as well as using lightning flash-rate density directly.</p>


2020 ◽  
Author(s):  
Matias Heino ◽  
Weston Anderson ◽  
Michael Puma ◽  
Matti Kummu

<p>It is well known that climate extremes and variability have strong implications for crop productivity. Previous research has estimated that annual weather conditions explain a third of global crop yield variability, with explanatory power above 50% in several important crop producing regions. Further, compared to average conditions, extreme events contribute a major fraction of weather induced crop yield variations. Here we aim to analyse how extreme weather events are related to the likelihood of very low crop yields at the global scale. We investigate not only the impacts of heat and drought on crop yields but also excess soil moisture and abnormally cool temperatures, as these extremes can be detrimental to crops as well. In this study, we combine reanalysis weather data with national and sub-national crop production statistics and assess relationships using statistical copulas methods, which are especially suitable for analysing extremes. Further, because irrigation can decrease crop yield variability, we assess how the observed signals differ in irrigated and rainfed cropping systems. We also analyse whether the strength of the observed statistical relationships could be explained by socio-economic factors, such as GDP, social stability, and poverty rates. Our preliminary results indicate that extreme heat and cold as well as soil moisture abundance and excess have a noticeable effect on crop yields in many areas around the globe, including several global bread baskets such as the United States and Australia. This study will increase understanding of extreme weather-related implications on global food production, which is relevant also in the context of climate change, as the frequency of extreme weather events is likely to increase in many regions worldwide.</p>


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Anil Kumar Roy

Developing countries are highly vulnerable to climate change [1,2]. They have less coping capacity to deal with its negative impacts. India is one of the most vulnerable countries in South Asia. It urgently requires adaptation and mitigation measures to cope with possible impacts arising from extreme weather events due to climate change. Indian cities, particularly the coastal ones, are at a comparatively greater risk as their population is likely to grow rapidly and may reach 500 million over the next 50 years [3]. The assessment of climate change impacts and adaptability both at the macro region and micro levels is necessary to create effective mitigation policies


Author(s):  
Friederike Otto

Natural disasters and extreme weather events have been of great societal importance throughout history and often brought everyday life to a catastrophic halt, in a way sometimes comparable to wars and epidemics, only without the lead time. Extreme weather events with large impacts serve as an anchor point of the collective memory of the population in the affected area. Every northern German of the right age remembers the storm surge of 1962 and where they were at the time and has friends or family effected by the event. The “dust bowl” of the 1930s with extensive droughts and heat waves shaped the life of a generation in the United States, and the Sahel droughts in the 1960s and 1970s led to famine and dislocation of population on a massive scale the region arguably never quite recovered from. Hurricane Hyian in 2013 is said to have directly influenced the outcome of the annual Conference of the Parties (COP) United Nation Framework Convention for Climate Change Negotiations in Warsaw, leading to the inclusion of a mechanism to deal with loss and damage from climate-related disasters. Though earthquakes are still fairly unpredictable on short timescales, this is not the case for weather events. Weather forecasts today are so good that we normally know the time and location of the landfall of a hurricane within a 100-mile radius days in advance. Improvements in the prediction of slow-onset events such as droughts (which depend on the rainfall over a large region and whole season) are less striking but have still improved dramatically in the late 20th and early 21st centuries. One of the major reasons for the large increase in the accuracy of weather forecasts is the exponential increase in computing power, which allows scientists to predict and study extreme weather events using complex computer models, simulating possible weather events under certain conditions to understand the statistics of and physical mechanisms behind extreme events. Extreme events are by definition rare and thus impossible to understand from historical records of weather observation alone. Despite the progress on our understanding of and ability to predict extreme weather events, substantial uncertainties remain. Two aspects are of particular importance. Firstly, we know that the climate is changing, having observed almost a one-degree increase in global mean temperature. However, global mean temperature doesn’t kill anyone, extreme weather events do. Their frequency and intensity is changing and will continue to change, but the extent of these changes depends on a host of both global and local factors. Secondly, whether or not a rare weather event leads to extreme impacts depends largely on the vulnerability and exposure of the affected societies. If these are high, even a perfectly forecasted weather event leads to disaster.


2021 ◽  
Author(s):  
Ted Hsuan Yun Chen ◽  
Boyoon Lee

Residential relocation following extreme weather events is among the costliest individual-level measures of climate change adaptation. Consequently, they are fraught with inequalities, with disadvantaged groups most adversely impacted. As climate change continues to exacerbate extreme weather events, it is imperative that we better understand how existing socioeconomic inequalities affect climate migration and how they may be offset. In this study we use network regression models to look at how internal migration patterns in the United States vary by disaster-related property damage, household income, and local-level disaster resilience. Our results show that post-disaster migration patterns vary considerably by the income level of sending and receiving counties, which suggests that income-based inequality impacts both access to relocation for individuals and the ability to rebuild for disaster-afflicted areas. We further find evidence that these inequalities are attenuated in areas with higher disaster resilience. However, because existing resilience incentivizes in situ incremental adaptation which can be a long term drain on individual wellbeing and climate adaptation resources, they should be balanced with policies that encourage relocation where appropriate.


Sign in / Sign up

Export Citation Format

Share Document