Extreme Weather and Climate

Author(s):  
Friederike Otto

Natural disasters and extreme weather events have been of great societal importance throughout history and often brought everyday life to a catastrophic halt, in a way sometimes comparable to wars and epidemics, only without the lead time. Extreme weather events with large impacts serve as an anchor point of the collective memory of the population in the affected area. Every northern German of the right age remembers the storm surge of 1962 and where they were at the time and has friends or family effected by the event. The “dust bowl” of the 1930s with extensive droughts and heat waves shaped the life of a generation in the United States, and the Sahel droughts in the 1960s and 1970s led to famine and dislocation of population on a massive scale the region arguably never quite recovered from. Hurricane Hyian in 2013 is said to have directly influenced the outcome of the annual Conference of the Parties (COP) United Nation Framework Convention for Climate Change Negotiations in Warsaw, leading to the inclusion of a mechanism to deal with loss and damage from climate-related disasters. Though earthquakes are still fairly unpredictable on short timescales, this is not the case for weather events. Weather forecasts today are so good that we normally know the time and location of the landfall of a hurricane within a 100-mile radius days in advance. Improvements in the prediction of slow-onset events such as droughts (which depend on the rainfall over a large region and whole season) are less striking but have still improved dramatically in the late 20th and early 21st centuries. One of the major reasons for the large increase in the accuracy of weather forecasts is the exponential increase in computing power, which allows scientists to predict and study extreme weather events using complex computer models, simulating possible weather events under certain conditions to understand the statistics of and physical mechanisms behind extreme events. Extreme events are by definition rare and thus impossible to understand from historical records of weather observation alone. Despite the progress on our understanding of and ability to predict extreme weather events, substantial uncertainties remain. Two aspects are of particular importance. Firstly, we know that the climate is changing, having observed almost a one-degree increase in global mean temperature. However, global mean temperature doesn’t kill anyone, extreme weather events do. Their frequency and intensity is changing and will continue to change, but the extent of these changes depends on a host of both global and local factors. Secondly, whether or not a rare weather event leads to extreme impacts depends largely on the vulnerability and exposure of the affected societies. If these are high, even a perfectly forecasted weather event leads to disaster.

Author(s):  
D.B. Kiktev ◽  
◽  
E.N. Kruglova ◽  
I.A. Kulikova ◽  
A.V. Muravev ◽  
...  

The automatic identification of objects associated with various extreme weather events (EWE) on seasonal and intraseasonal timescales is done based on surface air temperature and precipitation datasets (NCEP/NCAR daily reanalysis fields for the Northern Hemisphere). Some features of the spatial and temporal variability of the extreme characteristics of temperature and precipitation regimes are considered in the context of climate change. An inventory of extreme events is carried out for the Northern Hemisphere in 1981–2019 depending on the spatial extent, duration, and intensity of EWEs. The years with the most striking events are noted, and a brief description of their specific features is given. The results will be used to analyze the EWE predictability in the context of the verification of long-range weather forecasts. Keywords: extreme weather events, climate change, identification of extreme events, long-range weather forecasts


2018 ◽  
Author(s):  
Junxi Zhang ◽  
Yang Gao ◽  
Kun Luo ◽  
L. Ruby Leung ◽  
Yang Zhang ◽  
...  

Abstract. The Weather Research and Forecasting model with Chemistry (WRF/Chem) was used to study the effect of extreme weather events on ozone in US for historical (2001–2010) and future (2046–2055) periods under RCP8.5 scenario. During extreme weather events, including heat waves, atmospheric stagnation, and their compound events, ozone concentration is much higher compared to non-extreme events period. A striking enhancement of effect during compound events is revealed when heat wave and stagnation occur simultaneously and both high temperature and low wind speed promote the production of high ozone concentrations. In regions with high emissions, compound extreme events can shift the high-end tails of the probability density functions (PDFs) of ozone to even higher values to generate extreme ozone episodes. In regions with low emissions, extreme events can still increase high ozone frequency but the high-end tails of the PDFs are constrained by the low emissions. Despite large anthropogenic emission reduction projected for the future, compound events increase ozone more than the single events by 10 % to 13 %, comparable to the present, and high ozone episodes are not eliminated. Using the CMIP5 multi-model ensemble, the frequency of compound events is found to increase more dominantly compared to the increased frequency of single events in the future over the US, Europe, and China. High ozone episodes will likely continue in the future due to increases in both frequency and intensity of extreme events, despite reductions in anthropogenic emissions of its precursors. However, the latter could reduce or eliminate extreme ozone episodes, so improving projections of compound events and their impacts on extreme ozone may better constrain future projections of extreme ozone episodes that have detrimental effects on human health.


2018 ◽  
Vol 2 (1) ◽  
pp. 9-24
Author(s):  
Edoardo Bertone ◽  
Oz Sahin ◽  
Russell Richards ◽  
Anne Roiko

Abstract A decision support tool was created to estimate the treatment efficiency of an Australian drinking water treatment system based on different combinations of extreme weather events and long-term changes. To deal with uncertainties, missing data, and nonlinear behaviours, a Bayesian network (BN) was coupled with a system dynamics (SD) model. The preliminary conceptual structures of these models were developed through stakeholders' consultation. The BN model could rank extreme events, and combinations of them, based on the severity of their impact on health-related water quality. The SD model, in turn, was used to run a long-term estimation of extreme events' impacts by including temporal factors such as increased water demand and customer feedback. The integration of the two models was performed through a combined Monte Carlo–fuzzy logic approach which allowed to take the BN's outputs as inputs for the SD model. The final product is a participatory, multidisciplinary decision support system allowing for robust, sustainable long-term water resources management under uncertain conditions for a specific location.


2020 ◽  
Author(s):  
Benjamin Quesada ◽  
Souleymane Sy

<p>Beyond global mean temperatures, anthropogenic land cover change (LCC) can have significant impacts at regional and seasonal scales but also on extreme weather events to which human, natural and economical systems are highly vulnerable. However, the effects of LCC on extreme events remain either largely unexplored at global and regional scale and/or without consensus. Here, using several Earth System Models under two different LCC scenarios (the RCP8.5 and RCP2.6 Representative Concentration Pathways) and analyzing 20 extreme weather indices, we find future LCC substantially modulates projected weather extremes particularly at regional level.</p><p>On average by the end of the 21<sup>st</sup> century, under RCP8.5 and RCP2.6 scenarios, future LCC robustly lessens global projections of high rainfall extremes. Accounting for LCC diminishes regional projections of heavy precipitation days or consecutive wet days by more than 50% in southern Africa or northeastern Brazil but intensifies projected dry days in eastern Africa by 30%. LCC do not substantially affect projections of global and regional temperature extremes projections (<5%), but it can impact global rainfall extremes 2.5 times more than global mean rainfall projections.</p><p>Under RCP2.6 scenario, global LCC impacts are similar but of lesser magnitude while at regional scale in Amazon or Asia, LCC enhances drought projections. We investigate the underlying biophysical drivers behind those projected changes.</p><p>We stress here that multi-coupled modelling frameworks incorporating all aspects of land use-land cover change and more model-data benchmarking are needed for reliable projections of extreme events.</p><div> <div> </div> </div>


2020 ◽  
Author(s):  
Matias Heino ◽  
Weston Anderson ◽  
Michael Puma ◽  
Matti Kummu

<p>It is well known that climate extremes and variability have strong implications for crop productivity. Previous research has estimated that annual weather conditions explain a third of global crop yield variability, with explanatory power above 50% in several important crop producing regions. Further, compared to average conditions, extreme events contribute a major fraction of weather induced crop yield variations. Here we aim to analyse how extreme weather events are related to the likelihood of very low crop yields at the global scale. We investigate not only the impacts of heat and drought on crop yields but also excess soil moisture and abnormally cool temperatures, as these extremes can be detrimental to crops as well. In this study, we combine reanalysis weather data with national and sub-national crop production statistics and assess relationships using statistical copulas methods, which are especially suitable for analysing extremes. Further, because irrigation can decrease crop yield variability, we assess how the observed signals differ in irrigated and rainfed cropping systems. We also analyse whether the strength of the observed statistical relationships could be explained by socio-economic factors, such as GDP, social stability, and poverty rates. Our preliminary results indicate that extreme heat and cold as well as soil moisture abundance and excess have a noticeable effect on crop yields in many areas around the globe, including several global bread baskets such as the United States and Australia. This study will increase understanding of extreme weather-related implications on global food production, which is relevant also in the context of climate change, as the frequency of extreme weather events is likely to increase in many regions worldwide.</p>


2021 ◽  
Author(s):  
S Vijayakumar ◽  
A.K. Nayak ◽  
N. Manikandan ◽  
Suchismita Pattanaik ◽  
Rahul Tripathi ◽  
...  

Abstract The study investigates trend in extreme daily precipitation and temperature over coastal Odisha, India. 18 weather indices (8 related to temperature and 10 related to rainfall) were calculated using RClimDex software package for the period 1980–2010 . Trend analysis was carried out using linear regression and non-parametric Mann-Kendall test to find out the statistical significance of various indices. Results indicated, a strong and significant trend in temperature indices while the weak and non-significant trend in precipitation indices. The positive trend in Tmax mean, Tmin mean, TN90p (warm nights), TX90p (warm days), diurnal temperature range (DTR), warm spell duration indicator (WSDI), consecutive dry days (CDD) indicates increasing the frequency of warming events in coastal Odisha. Similarly, positive trend in highest maximum 1-day precipitation (RX1), highest maximum 2 consecutive day precipitation (RX2), highest maximum 3 consecutive day precipitation (RX3), highest maximum 5 consecutive day precipitation (RX5), number of heavy precipitation days (≥64.5mm), number of very heavy precipitation days (≥124.5mm) and negative trend in the number of rainy days (R2.5mm), consecutive wet days (CWD) indicate changes toward the more intense and poor distribution of precipitation in coastal Odisha. The combined effect of precipitation and temperature extreme events showed negative effects on rice grain yield. With the increasing number of extreme events there was sharp decline in rice grain yield was observed in the same year in all the coastal districts. This study emphasizes the need for new technology/management practice to minimize the impacts of extreme weather events on rice yield.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244512
Author(s):  
Luis Alexis Rodríguez-Cruz ◽  
Meredith T. Niles

Understanding how perceptions around motivation, capacity, and climate change’s impacts relate to the adoption of adaptation practices in light of experiences with extreme weather events is important in assessing farmers’ adaptive capacity. However, very little of this work has occurred in islands, which may have different vulnerabilities and capacities for adaptation. Data of surveyed farmers throughout Puerto Rico after Hurricane Maria (n = 405, 87% response rate) were used in a structural equation model to explore the extent to which their adoption of agricultural practices and management strategies was driven by perceptions of motivation, vulnerability, and capacity as a function of their psychological distance of climate change. Our results show that half of farmers did not adopt any practice or strategy, even though the majority perceived themselves capable and motivated to adapt to climate change, and understood their farms to be vulnerable to future extreme events. Furthermore, adoption was neither linked to these adaptation perceptions, nor to their psychological distance of climate change, which we found to be both near and far. Puerto Rican farmers’ showed a broad awareness of climate change’s impacts both locally and globally in different dimensions (temporal, spatial, and social), and climate distance was not linked to reported damages from Hurricane Maria or to previous extreme weather events. These results suggest that we may be reaching a tipping point for extreme events as a driver for climate belief and action, especially in places where there is a high level of climate change awareness and continued experience of compounded impacts. Further, high perceived capacity and motivation are not linked to actual adaptation behaviors, suggesting that broadening adaptation analyses beyond individual perceptions and capacities as drivers of climate adaptation may give us a better understanding of the determinants to strengthen farmers’ adaptive capacity.


Author(s):  
Peter J. Webster ◽  
Jun Jian

The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change.


Author(s):  
Coline Remy ◽  
Candace Brakewood ◽  
Niloofar Ghahramani ◽  
Eun Jin Kwak ◽  
Jonathan Peters

Extreme weather events such as heavy snow can severely disrupt urban transportation systems. When this occurs, travelers often seek information about the status of transportation services. This study aims to assess information utilization during an extreme weather event by analyzing data from a smartphone application (“app”) called Transit, which provides real-time transit and shared mobility information in many cities. This research focuses on a snowstorm that hit the northeastern United States in January 2016 and severely disrupted transit and shared mobility services. An analysis of Transit app data is conducted in four parts for New York City, Philadelphia, and Washington, D.C. First, hourly app utilization during the snowstorm was compared with mean hourly app utilization prior to the storm. Second, the rate of app usage was calculated by dividing hourly utilization during the storm by the mean hourly volume before the storm. Third, an ordinary least squares regression model of hourly app usage was estimated for each city. Last, a feature within the app used to request Uber vehicles was examined. The results of the first three analyses reveal that overall app usage decreased during the snowstorm in all three cities; after the storm, New York experienced a significant increase in overall app use during the first Monday commuting period. The analysis of Uber data reveals that app users continued to search for ridehailing services during the snowstorm, despite travel bans. These findings are important for transportation operators and app developers to understand how travelers use information during extreme weather events.


Sign in / Sign up

Export Citation Format

Share Document