scholarly journals Left ventricular dyssynergy and dispersion as determinant factors of fatal ventricular arrhythmias in patients with mildly reduced ejection fraction

2015 ◽  
Vol 17 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Hiroki Matsuzoe ◽  
Hidekazu Tanaka ◽  
Kensuke Matsumoto ◽  
Hiromi Toki ◽  
Hiroyuki Shimoura ◽  
...  
2012 ◽  
Vol 9 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Otto A Smiseth ◽  
Anders Opdahl ◽  
Espen Boe ◽  
Helge Skulstad

Heart failure with preserved left ventricular ejection fraction (HF-PEF), sometimes named diastolic heart failure, is a common condition most frequently seen in the elderly and is associated with arterial hypertension and left ventricular (LV) hypertrophy. Symptoms are attributed to a stiff left ventricle with compensatory elevation of filling pressure and reduced ability to increase stroke volume by the Frank-Starling mechanism. LV interaction with stiff arteries aggravates these problems. Prognosis is almost as severe as for heart failure with reduced ejection fraction (HF-REF), in part reflecting co-morbidities. Before the diagnosis of HF-PEF is made, non-cardiac etiologies must be excluded. Due to the non-specific nature of heart failure symptoms, it is essential to search for objective evidence of diastolic dysfunction which, in the absence of invasive data, is done by echocardiography and demonstration of signs of elevated LV filling pressure, impaired LV relaxation, or increased LV diastolic stiffness. Antihypertensive treatment can effectively prevent HF-PEF. Treatment of HF-PEF is symptomatic, with similar drugs as in HF-REF.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Johnsen ◽  
M Sengeloev ◽  
P Joergensen ◽  
N Bruun ◽  
D Modin ◽  
...  

Abstract Background Novel echocardiographic software allows for layer-specific evaluation of myocardial deformation by 2-dimensional speckle tracking echocardiography. Endocardial, epicardial- and whole wall global longitudinal strain (GLS) may be superior to conventional echocardiographic parameters in predicting all-cause mortality in patients with heart failure with reduced ejection fraction (HFrEF). Purpose The purpose of this study was to investigate the prognostic value of endocardial-, epicardial- and whole wall GLS in patients with HFrEF in relation to all-cause mortality. Methods We included and analyzed transthoracic echocardiographic examinations from 1,015 patients with HFrEF. The echocardiographic images were analyzed, and conventional and novel echocardiographic parameters were obtained. A p value in a 2-sided test <0.05 was considered statistically significant. Cox proportional hazards regression models were constructed, and both univariable and multivariable hazard ratios (HRs) were calculated. Results During a median follow-up time of 40 months, 171 patients (16.8%) died. A lower endocardial (HR 1.17; 95% CI (1.11–1.23), per 1% decrease, p<0.001), epicardial (HR 1.20; 95% CI (1.13–1.27), per 1% decrease, p<0.001), and whole wall (HR 1.20; 95% CI (1.14–1.27), per 1% decrease, p<0.001) GLS were all associated with higher risk of death (Figure 1). Both endocardial (HR 1.12; 95% CI (1.01–1.23), p=0.027), epicardial (HR 1.13; 95% CI (1.01–1.26), p=0.040) and whole wall (HR 1.13; 95% CI (1.01–1.27), p=0.030) GLS remained independent predictors of mortality in the multivariable models after adjusting for significant clinical parameters (age, sex, total cholesterol, mean arterial pressure, heart rate, ischemic cardiomyopathy, percutaneous transluminal coronary angioplasty and diabetes) and conventional echocardiographic parameters (left ventricular (LV) ejection fraction, LV mass index, left atrial volume index, deceleration time, E/e', E-velocity, E/A ratio and tricuspid annular plane systolic excursion). No other echocardiographic parameters remained an independent predictors after adjusting. Furthermore, endocardial, epicardial and whole wall GLS had the highest C-statistics of all the echocardiographic parameters. Conclusion Endocardial, epicardial and whole wall GLS are independent predictors of all-cause mortality in patients with HFrEF. Furthermore, endocardial, epicardial and whole wall GLS were superior prognosticators of all-cause mortality compared with all other echocardiographic parameters. Funding Acknowledgement Type of funding source: Public hospital(s). Main funding source(s): Herlev and Gentofte Hospital


Angiology ◽  
2021 ◽  
pp. 000331972110473
Author(s):  
Umut Karabulut ◽  
Kudret Keskin ◽  
Dilay Karabulut ◽  
Ece Yiğit ◽  
Zerrin Yiğit

The angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan and sodium-glucose cotransporter-2 (SGLT-2) inhibitor dapagliflozin have been shown to reduce rehospitalization and cardiac mortality in patients with heart failure (HF) with reduced ejection fraction (HFrEF). We aimed to compare the long-term cardiac and all-cause mortality of ARNI and dapagliflozin combination therapy against ARNI monotherapy in patients with HFrEF. This retrospective study involved 244 patients with HF with New York Heart Association (NYHA) class II–IV symptoms and ejection fraction ≤40%. The patients were divided into 2 groups: ARNI monotherapy and ARNI+dapagliflozin. Median follow-up was 2.5 (.16–3.72) years. One hundred and seventy-five (71.7%) patients were male, and the mean age was 65.9 (SD, 10.2) years. Long-term cardiac mortality rates were significantly lower in the ARNI+dapagliflozin group (7.4%) than in the ARNI monotherapy group (19.5%) ( P = .01). Dapagliflozin [Hazard Ratio (HR) [95% Confidence Interval (CI)] = .29 [.10–.77]; P = .014] and left ventricular ejection fraction (LVEF) [HR (95% CI) = .89 (.85–.93); P < .001] were found to be independent predictors of cardiac mortality. Our study showed a significant reduction in cardiac mortality with ARNI and dapagliflozin combination therapy compared with ARNI monotherapy.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Natasha Cuk ◽  
Jae H Cho ◽  
Donghee Han ◽  
Joseph E Ebinger ◽  
Eugenio Cingolani

Introduction: Sudden death due to ventricular arrhythmias (VA) is one of the main causes of mortality in patients with heart failure and preserved ejection fraction (HFpEF). Ventricular fibrosis in HFpEF has been suspected as a substrate of VA, but the degree of fibrosis has not been well characterized. Hypothesis: HFpEF patients with increased degree of fibrosis will manifest more VA. Methods: Cedars-Sinai medical records were probed using Deep 6 artificial intelligence data extraction software to identify patients with HFpEF who underwent cardiac magnetic resonance imaging (MRI). MRI of identified patients were reviewed to measure extra-cellular volume (ECV) and degree of fibrosis. Ambulatory ECG monitoring (Ziopatch) of those patients were also reviewed to study the prevalence of arrhythmias. Results: A total of 12 HFpEF patients who underwent cardiac MRI were identified. Patients were elderly (mean age 70.3 ± 7.1), predominantly female (83%), and overweight (mean BMI 32 ± 9). Comorbidities included hypertension (83%), dyslipidemia (75%), and coronary artery disease (67%). Mean left ventricular ejection fraction by echocardiogram was 63 ± 8.7%. QTc as measured on ECG was not significantly prolonged (432 ± 15 ms). ECV was normal in those patients for whom it was available (24.2 ± 3.1, n = 9) with 3/12 patients (25%) demonstrating ventricular fibrosis by MRI (average burden of 9.6 ± 5.9%). Ziopatch was obtained in 8/12 patients (including all 3 patients with fibrosis) and non-sustained ventricular tachycardia (NSVT) was identified in 5/8 (62.5%). One patient with NSVT and without fibrosis on MRI also had a sustained VA recorded. In those patients who had Ziopatch monitoring, there was no association between presence of fibrosis and NSVT (X2 = 0.035, p = 0.85). Conclusions: Ventricular fibrosis was present in 25% of HFpEF patients in this study and NSVT was observed in 62.5% of those patients with HFpEF who had Ziopatch monitoring. The presence of fibrosis by Cardiac MRI was not associated with NSVT in this study; however, the size of the cohort precludes broadly generalizable conclusions about this association. Further investigation is required to better understand the relationship between ventricular fibrosis by MRI and VA in patients with HFpEF.


2017 ◽  
Vol 22 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Kavita B Khaira ◽  
Ellen Brinza ◽  
Gagan D Singh ◽  
Ezra A Amsterdam ◽  
Stephen W Waldo ◽  
...  

The impact of heart failure (HF) on long-term survival in patients with critical limb ischemia (CLI) has not been well described. Outcomes stratified by left ventricular ejection fraction (EF) are also unknown. A single center retrospective chart review was performed for patients who underwent treatment for CLI from 2006 to 2013. Baseline demographics, procedural data and outcomes were analyzed. HF diagnosis was based on appropriate signs and symptoms as well as results of non-invasive testing. Among 381 CLI patients, 120 (31%) had a history of HF and 261 (69%) had no history of heart failure (no-HF). Within the HF group, 74 (62%) had HF with preserved ejection fraction (HFpEF) and 46 (38%) had HF with reduced ejection fraction (HFrEF). The average EF for those with no-HF, HFpEF and HFrEF were 59±13% vs 56±9% vs 30±9%, respectively. The likelihood of having concomitant coronary artery disease (CAD) was lowest in the no-HF group (43%), higher in the HFpEF group (70%) and highest in the HFrEF group (83%) ( p=0.001). Five-year survival was on average twofold higher in the no-HF group (43%) compared to both the HFpEF (19%, p=0.001) and HFrEF groups (24%, p=0.001). Long-term survival rates did not differ between the two HF groups ( p=0.50). There was no difference in 5-year freedom from major amputation or freedom from major adverse limb events between the no-HF, HFpEF and HFrEF groups, respectively. Overall, the combination of CLI and HF is associated with poor 5-year survival, independent of the degree of left ventricular systolic dysfunction.


Sign in / Sign up

Export Citation Format

Share Document