scholarly journals Three-dimensional printed cardiac fistulae: a case series

2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Nicholas Aroney ◽  
Ryan Markham ◽  
Anthony Putrino ◽  
James Crowhurst ◽  
Douglas Wall ◽  
...  

Abstract Background Three-dimensional (3D) printing of cardiac fistulae allows for immediate understanding of their complex courses and anatomical relations. Models can be used to improve patient understanding, enhance the consenting process, facilitate communication between multidisciplinary staff at heart team meetings, and help plan surgical or percutaneous interventions. Case summary We report four cases where 3D printed models were used as an adjunct with traditional measures in treating patients with complex cardiac fistulae. Discussion In our cases, overall patient understanding was improved, staff at heart team meetings were more aware of anatomical anomalies and perioperatively planning saw adjustments made that may have ultimately benefited patient outcome. Our cases highlight the additional benefit that 3D printed models can play when treating patients with complex cardiac fistulae.

2021 ◽  
pp. 112067212110000
Author(s):  
Annabel LW Groot ◽  
Jelmer S Remmers ◽  
Roel JHM Kloos ◽  
Peerooz Saeed ◽  
Dyonne T Hartong

Purpose: Recurrent contracted sockets are complex situations where previous surgeries have failed, disabling the wear of an ocular prosthesis. A combined method of surgery and long-term fixation using custom-made, three-dimensional (3D) printed conformers is evaluated. Methods: Retrospective case series of nine patients with recurrent excessive socket contraction and inability to wear a prosthesis, caused by chemical burns ( n = 3), fireworks ( n = 3), trauma ( n = 2) and enucleation and radiotherapy at childhood due to optic nerve glioma ( n = 1) with three average previous socket surgeries (range 2–6). Treatment consisted of a buccal mucosal graft and personalized 3D-printed conformer designed to be fixated to the periosteum and tarsal plates for minimal 2 months. Primary outcome was the retention of an ocular prosthesis. Secondary outcome was the need for additional surgeries. Results: Outcomes were measured at final follow-up between 7 and 36 months postoperatively (mean 20 months). Eight cases were able to wear an ocular prosthesis after 2 months. Three cases initially treated for only the upper or only the lower fornix needed subsequent surgery for the opposite fornix for functional reasons. Two cases had later surgery for cosmetic improvement of upper eyelid position. Despite pre-existing lid abnormalities (scar, entropion, lash deficiency), cosmetic outcome was judged highly acceptable in six cases because of symmetric contour and volume, and reasonably acceptable in the remaining two. Conclusions: Buccal mucosal transplant fixated with a personalized 3D-designed conformer enables retention of a well-fitted ocular prosthesis in previously failed socket surgeries. Initial treatment of both upper and lower fornices is recommended to avoid subsequent surgeries for functional reasons.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0012
Author(s):  
Joseph Tracey ◽  
Danny Arora ◽  
Selene Parekh

Category: Hindfoot Introduction/Purpose: Third generation total talar prostheses (TTP) are viable options for talar avascular necrosis (AVN) in the absence of neighboring joint pathology. The use of modern three-dimensional (3D) printing allows for the production of custom implants that exactly mimic the patient’s anatomy. The aim of this study is to determine the accuracy of 3D printing in reproducing a synthetic talus, and in doing so, restoring more normal anatomic relationships. We hypothesize that this mode of replication will restore and maintain normal radiographic alignment of the ankle, subtalar, and forefoot joints in the setting of talar AVN. Methods: A retrospective analysis was performed on all patients undergoing TTP implantation for the treatment of talar AVN between 2016 and 2017. Pertinent demographic and operative factors were recorded. Radiographic measurements were taken pre- and post-operatively to determine native talar dimensions, TTP implant dimensions, and the corresponding radiographic alignment about the forefoot, hindfoot, and ankle. Results: Fourteen patients, treated for AVN between 2016-2017, were identified in our cohort. Talar arc length and width were not found to be significantly changed, however talar height was significantly increased with use of TTP. Five alignment dimensions were measured (tibiotalar alignment, talar tilt angle, Boehler’s angle, talar declination angle, and Meary’s Angle), of which, only talar tilt angle was significantly changed. Instances of Meary’s angle correction were observed in cavus and planus foot deformity. Conclusion: This study represents the largest case series of TTP performed in the United States, and is the first to investigate the 3D printed TTP. As a proof-of-concept, 3D printed TTP was successful in restoring talar height and talar tilt in the setting of AVN. Additionally, the procedure maintained normal alignment in non-pathologic joints. Total talar prosthesis, based on our cohort, is a viable option to restore more normal anatomic alignment.


2019 ◽  
pp. 205141581987651 ◽  
Author(s):  
Michael Y. Chen ◽  
Jacob Skewes ◽  
Maria A. Woodruff ◽  
Nicholas J. Rukin

Author(s):  
Darren R. Carwardine ◽  
Mark J. Gosling ◽  
Neil J. Burton ◽  
Ffion L. O'Malley ◽  
Kevin J. Parsons

Abstract Objectives The aim of this study was to describe the use of patient-specific three-dimensional (3D)-printed osteotomy guides, repositioning guides and custom-printed titanium plates for acute correction of antebrachial limb deformities in four dogs. Methods Retrospective review of antebrachial limb deformities in small breed chondrodystrophic dogs that were surgically corrected using a closing wedge ostectomy of the radius at a predetermined site using patient-specific osteotomy guides. Reduction was achieved without the need for intraoperative measurements using patient-specific 3D-printed repositioning guides secured and manipulated using temporary Kirschner wire fixation. The ostectomy of the radius was stabilized with a patient-specific 3D-printed titanium plate. Results All limbs were corrected to within 3.5 degrees (standard deviation [SD]: 1 degree) and 7.5 degrees (SD: 3 degrees) of the pre-planned deformity correction in the frontal and sagittal planes, respectively. No complications were encountered. Owners completed a canine orthopaedic index survey at a median postoperative follow-up time of 19 months. Surgery eliminated the main presenting complaint of buckling over of the manus in all cases. Clinical Significance The 3D-printed osteotomy repositioning guides and titanium plates facilitated accurate acute correction of antebrachial deformities in this case series. The methodology described simplifies intraoperative surgical decision-making on limb position with good clinical outcomes seen in a small number of clinical cases.


2020 ◽  
pp. 193864002092094
Author(s):  
Lorena Bejarano-Pineda ◽  
Akhil Sharma ◽  
Samuel B. Adams ◽  
Selene G. Parekh

Introduction. Segmental bone loss in the hindfoot hinders the chance of successful outcomes. Tibiotalocalcaneal arthrodesis is a reliable option; nevertheless, the risk of nonunion is high. Three-dimensional (3D) printed titanium implants offer a strong scaffold that can be customized and has demonstrated encouraging healing rates. In this study, we described the clinical outcomes and the radiologic union rate of a case series of patients with hindfoot arthrodesis, using a retrograde intramedullary nail associated to a 3D printed titanium cage. Methods. Seven patients undergoing hindfoot arthrodesis, using a retrograde intramedullary nail associated to a custom 3D printed titanium cage, were included. Demographic data were collected. Functional outcomes were assessed using the American Orthopedic Foot and Ankle Score and the Visual Analogue Scale for pain. Hindfoot alignment and radiographic union were evaluated using weight-bearing radiographs and computed tomography scan, respectively. Results. A total of 6 (85%) patients had more than 50% bony bridging. Only 1 patient underwent below knee amputation due to recurrence of chronic osteomyelitis. Two additional patients had minor complications. Conclusion. Tibiotalocalcaneal arthrodesis using customized titanium cages for patients with large bone defects has shown a high rate of union in those at risk of nonunion. However, further research with larger series is needed. Levels of Evidence: Level IV: Case series


2018 ◽  
Vol 12 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Joseph Tracey ◽  
Danny Arora ◽  
Christopher E. Gross ◽  
Selene G. Parekh

Background: Third generation total talar prostheses (TTPs) are viable options for talar avascular necrosis (AVN) in the absence of neighboring joint pathology. The use of modern three-dimensional (3D) printing allows the production of custom implants that exactly mimic the patient’s anatomy. The aim of this study is to determine the accuracy of 3D printing in reproducing a synthetic talus and, in doing so, restoring more normal anatomical relationships. We hypothesize that this mode of replication will restore and maintain normal radiographic alignment of the ankle, subtalar, and forefoot joints in the setting of talar AVN. Methods: A retrospective analysis was performed on all patients undergoing TTP implantation for the treatment of talar AVN between 2016 and 2017. Radiographic measurements were taken preoperatively and postoperatively to determine native talar dimensions, TTP implant dimensions, and the corresponding radiographic alignment about the forefoot, hindfoot, and ankle. Results: A total of 14 patients were identified in our cohort. Talar arc length and width were not found to be significantly changed; however, talar height was significantly increased with use of TTP. Five alignment dimensions were measured, of which, only talar tilt angle was significantly changed. Instances of Meary’s angle correction were observed in cavus and planus foot deformity. Conclusion: As a proof of concept, 3D-printed TTP was successful in restoring talar height and talar tilt in the setting of AVN. Additionally, the procedure maintained normal alignment in nonpathological joints. TTPs, based on our cohort, are a viable option to restore more normal anatomical alignment. Levels of Evidence: Level IV: Case series


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


2020 ◽  
Vol 53 (03) ◽  
pp. 324-334
Author(s):  
Gautam Biswas

Abstract Reconstruction of the complex anatomy and aesthetics of the midface is often a challenge. A careful understanding of this three-dimensional (3D) structure is necessary. Anticipating the extent of excision and its planning following oncological resections is critical.In the past over two decades, with the advances in microsurgical procedures, contributions toward the reconstruction of this area have generated interest. Planning using digital imaging, 3D printed models, osseointegrated implants, and low-profile plates, has favorably impacted the outcome. However, there are still controversies in the management: to use single composite tissues versus multiple tissues; implants versus autografts; vascularized versus nonvascularized bone; prosthesis versus reconstruction.This article explores the present available options in maxillary reconstruction and outlines the approach in the management garnered from past publications and experiences.


Sign in / Sign up

Export Citation Format

Share Document