scholarly journals Fission yeast Prp4p kinase regulates pre‐mRNA splicing by phosphorylating a non‐SR‐splicing factor

EMBO Reports ◽  
2001 ◽  
Vol 2 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Wiebke Schwelnus ◽  
Kathrin Richert ◽  
Florian Opitz ◽  
Thomas Groß ◽  
Yasuaki Habara ◽  
...  
2006 ◽  
Vol 16 (24) ◽  
pp. 2488 ◽  
Author(s):  
Caroline R.M. Wilkinson ◽  
Gunnar A.G. Dittmar ◽  
Melanie D. Ohi ◽  
Peter Uetz ◽  
Nic Jones ◽  
...  

1999 ◽  
Vol 19 (8) ◽  
pp. 5352-5362 ◽  
Author(s):  
W. Hayes McDonald ◽  
Ryoma Ohi ◽  
Natalia Smelkova ◽  
David Frendewey ◽  
Kathleen L. Gould

ABSTRACT Myb-related cdc5p is required for G2/M progression in the yeast Schizosaccharomyces pombe. We report here that all detectable cdc5p is stably associated with a multiprotein 40S complex. Immunoaffinity purification has allowed the identification of 10 cwf (complexed with cdc5p) proteins. Two (cwf6p and cwf10p) are members of the U5 snRNP; one (cwf9p) is a core snRNP protein. cwf8p is the apparent ortholog of the Saccharomyces cerevisiaesplicing factor Prp19p. cwf1 + is allelic to theprp5 + gene defined by the S. pombesplicing mutant, prp5-1, and there is a strong negative genetic interaction between cdc5-120 andprp5-1. Five cwfs have not been recognized previously as important for either pre-mRNA splicing or cell cycle control. Further characterization of cwf1p, cwf2p, cwf3p, and cwf4p demonstrates that they are encoded by essential genes, cosediment with cdc5p at 40S, and coimmunoprecipitate with cdc5p. We further show that cdc5p associates with the U2, U5, and U6 snRNAs and that cells lackingcdc5 + function are defective in pre-mRNA splicing. These data raise the possibility that the cdc5p complex is an intermediate in the assembly or disassembly of an active S. pombe spliceosome.


2004 ◽  
Vol 14 (24) ◽  
pp. 2283-2288 ◽  
Author(s):  
Caroline R.M. Wilkinson ◽  
Gunnar A.G. Dittmar ◽  
Melanie D. Ohi ◽  
Peter Uetz ◽  
Nic Jones ◽  
...  

1991 ◽  
Vol 11 (7) ◽  
pp. 3425-3431
Author(s):  
P Delannoy ◽  
M H Caruthers

Mild heat treatment of HeLa cell nuclear extracts (NE) selectively inhibits pre-mRNA splicing. Heat-inactivated extracts can be complemented by a small amount of untreated NE. Utilizing this complementation assay and a combination of ion-exchange, affinity, and hydrophobic chromatography, a heat reversal factor (HRF) was purified from NE that is required to rescue pre-mRNA splicing from a heat-inactivated extract. This activity in its most purified form consistently copurified in a fraction containing two 70-kDa proteins and a minor polypeptide of approximately 100 kDa. It was free of the major small nuclear RNAs, sensitive to protease, and required to rescue spliceosome formation from a heat-inactivated nuclear extract. These results suggest that this factor is a protein that may be an important component in pre-mRNA splicing, or alternatively, it may be involved in renaturation of a heat-sensitive splicing factor.


1996 ◽  
Vol 133 (5) ◽  
pp. 929-941 ◽  
Author(s):  
G Baurén ◽  
W Q Jiang ◽  
K Bernholm ◽  
F Gu ◽  
L Wieslander

We describe the dynamic organization of pre-mRNA splicing factors in the intact polytene nuclei of the dipteran Chironomus tentans. The snRNPs and an SR non-snRNP splicing factor are present in excess, mainly distributed throughout the interchromatin. Approximately 10% of the U2 snRNP and an SR non-snRNP splicing factor are associated with the chromosomes, highly enriched in active gene loci where they are bound to RNA. We demonstrate that the splicing factors are specifically recruited to a defined gene upon induction of transcription during physiological conditions. Concomitantly, the splicing factors leave gene loci in which transcription is turned off. We also demonstrated that upon general transcription inhibition, the splicing factors redistribute from active gene loci to the interchromatin. Our findings demonstrate the dynamic intranuclear organization of splicing factors and a tight linkage between transcription and the intranuclear organization of the splicing machinery.


Nature ◽  
1997 ◽  
Vol 387 (6632) ◽  
pp. 523-527 ◽  
Author(s):  
Tom Misteli ◽  
Javier F. Cáceres ◽  
David L. Spector

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 680 ◽  
Author(s):  
Asmaa Samy ◽  
Baris Suzek ◽  
Mehmet Ozdemir ◽  
Ozge Sensoy

Cancer is the second leading cause of death worldwide. The etiology of the disease has remained elusive, but mutations causing aberrant RNA splicing have been considered one of the significant factors in various cancer types. The association of aberrant RNA splicing with drug/therapy resistance further increases the importance of these mutations. In this work, the impact of the splicing factor 3B subunit 1 (SF3B1) K700E mutation, a highly prevalent mutation in various cancer types, is investigated through molecular dynamics simulations. Based on our results, K700E mutation increases flexibility of the mutant SF3B1. Consequently, this mutation leads to i) disruption of interaction of pre-mRNA with SF3B1 and p14, thus preventing proper alignment of mRNA and causing usage of abnormal 3’ splice site, and ii) disruption of communication in critical regions participating in interactions with other proteins in pre-mRNA splicing machinery. We anticipate that this study enhances our understanding of the mechanism of functional abnormalities associated with splicing machinery, thereby, increasing possibility for designing effective therapies to combat cancer at an earlier stage.


Sign in / Sign up

Export Citation Format

Share Document