scholarly journals Demonstration of a dynamic, transcription-dependent organization of pre-mRNA splicing factors in polytene nuclei.

1996 ◽  
Vol 133 (5) ◽  
pp. 929-941 ◽  
Author(s):  
G Baurén ◽  
W Q Jiang ◽  
K Bernholm ◽  
F Gu ◽  
L Wieslander

We describe the dynamic organization of pre-mRNA splicing factors in the intact polytene nuclei of the dipteran Chironomus tentans. The snRNPs and an SR non-snRNP splicing factor are present in excess, mainly distributed throughout the interchromatin. Approximately 10% of the U2 snRNP and an SR non-snRNP splicing factor are associated with the chromosomes, highly enriched in active gene loci where they are bound to RNA. We demonstrate that the splicing factors are specifically recruited to a defined gene upon induction of transcription during physiological conditions. Concomitantly, the splicing factors leave gene loci in which transcription is turned off. We also demonstrated that upon general transcription inhibition, the splicing factors redistribute from active gene loci to the interchromatin. Our findings demonstrate the dynamic intranuclear organization of splicing factors and a tight linkage between transcription and the intranuclear organization of the splicing machinery.

2005 ◽  
Vol 25 (24) ◽  
pp. 10745-10754 ◽  
Author(s):  
Qiang Wang ◽  
Jin He ◽  
Bert Lynn ◽  
Brian C. Rymond

ABSTRACT The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing. Remarkably, only the final 53 amino acids of Rcp10p are essential. p17 is shown to be composed of two accessory splicing factors, Bud31p and Ist3p, the latter of which independently associates with the RES complex implicated in the nuclear pre-mRNA retention. A directed two-hybrid screen reveals a network of prospective interactions that includes previously unreported intra-SF3b contacts and SF3b interactions with the RES subunit Bud13p, the Prp5p DExD/H-box protein, Mud2p, and the late-acting nineteen complex. These data establish the concordance of yeast and mammalian SF3b complexes, implicate accessory splicing factors in U2 snRNP function, and support SF3b contribution from early pre-mRNP recognition to late steps in splicing.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 961-961 ◽  
Author(s):  
Stanley Chun-Wei Lee ◽  
Khrystyna Dilai ◽  
Esther A. Obeng ◽  
Eunhee Kim ◽  
Jean-Baptiste Micol ◽  
...  

Abstract Mutations in genes encoding RNA splicing factors constitute the most common class of alterations in patients with myelodysplasticsyndromes (MDS). These occur predominantly as heterozygous point mutations at restricted residues in SF3B1, SRSF2, and U2AF1 in a mutually exclusive manner, suggesting that spliceosomal gene mutations confer gain-of-function with converging biological effects. However, recent studies suggest that mutations in each splicing factor result in distinct alterations in pre-mRNA splicing. It is therefore unclear if such mutual exclusivity is due to overlapping biological effects and/or synthetic lethal interactions. Furthermore, although cells bearing mutant splicing factors have been shown to require the wildtype allele for survival, whether these mutations can exist in a homozygous state is unknown. Here we addressed these questions by analyzing the effects of expressing SF3B1 and SRSF2 mutations simultaneously or in a homozygous state in vivo. Re-analysis of published sequencing data revealed that only 2% of MDS patients (86/4,032) have mutations in >1 splicing factor simultaneously (whether these mutations are present in the same cell or not is unclear). Of these 86 patients, co-mutations in SRSF2 and SF3B1 represent the most prevalent combination (n=23/86) with all SRSF2 mutations affecting the P95 residue while all co-existing SF3B1 mutations occurred outside of the most commonly mutated K700 residue. To understand the basis for exclusivity of SRSF2P95 and SF3B1K700 mutations, we generated mice for inducible heterozygous expression of Sf3b1K700E/+ and Srsf2P95H/+ mutations simultaneously (Mx1-cre Sf3b1K700E/+/Srsf2P95H/+). We next performed competitive bone marrow transplantation (BMT) assays where each mutation was induced, alone or together, following stable engraftment (Figure 1A). Simultaneous expression of Sf3b1K700E and Srsf2P95H mutations resulted in severe defects on the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC), which were outcompeted by wildtype and single-mutant HSPCs (Figure 1B). In noncompetitive BMT assays, HSPCs co-expressing Sf3b1K700E and Srsf2P95H mutations had severe defects in multi-lineage reconstitution (Figure 1C). Analyses of hematopoietic organs 6 months post-BMT revealed a near complete absence of Sf3b1K700E/+/Srsf2P95H/+ double-mutant cells, which was distinct from expression of Sf3b1K700E or Srsf2P95H mutationalone. In addition, mice with conditional homozygous expression of the SRSF2P95H mutation (Mx1-cre Srsf2P95H/P95H) had severe defects in HSPC self-renewal as well as multi-lineage reconstitution, analogous to those seen with hemizygous Srsf2P95H expression (Mx1-cre Srsf2P95H/KO) (Figure 1D). As noted earlier, SF3B1 and SRSF2 mutations cause different effects on mRNA splicing. However, there has never been a direct comparison of the effects of each of these mutations in an isogenic context. To address this and to understand the mechanistic basis for exclusivity of these mutations, we performed RNA-seq on lineage- c-Kit+ cells from Mx1-cre Sf3b1K700E/+/Srsf2P95H/+ andcontrols 2 weeks after conditionally expressing each mutation alone or together. As evidence of the intolerability of combined SF3B1/SRSF2 mutations, mean allelic ratio of Sf3b1K700E and Srsf2P95H expressed in double-mutant mice was 20.7% and 33.5%, respectively, markedly lower than the near 50% expression seen in single-mutant controls. Despite this, principle component analysis of differentially spliced genes revealed distinct changes mediated by expression of Sf3b1K700E and Srsf2P95H mutations (Figure 1E). Moreover, previously described changes to alternative 3" splice site selection as well as cassette exon splicing were seen in cells bearing Sf3b1K700E and Srsf2P95H mutation, respectively, as well as in Sf3b1K700E/+/Srsf2P95H/+ double-mutantcells. These findings indicate thatspliceosomalgene mutations, despite imparting distinct alterations on gene expression and splicing, are not tolerated when co-expressed in the same cell, thus providing a basis for their strong mutual exclusivity in MDS. These data, combined with the fact that neitherhemizygousnor homozygous expression of splicing factor mutations is tolerated, further establishes the unique requirement ofspliceosomalmutant cells on the remaining function ofwildtypespliceosomecomponents. Figure 1. Figure 1. Disclosures Palacino: H3 Biomedicine Inc.: Employment. Seiler:H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. Smith:H3 Biomedicine Inc.: Employment.


1998 ◽  
Vol 18 (9) ◽  
pp. 5425-5434 ◽  
Author(s):  
Catharine F. Kennedy ◽  
Angela Krämer ◽  
Susan M. Berget

ABSTRACT One of the earliest steps in pre-mRNA recognition involves binding of the splicing factor U2 snRNP auxiliary factor (U2AF or MUD2 inSaccharomyces cerevisiae) to the 3′ splice site region. U2AF interacts with a number of other proteins, including members of the serine/arginine (SR) family of splicing factors as well as splicing factor 1 (SF1 or branch point bridging protein in S. cerevisiae), thereby participating in bridging either exons or introns. In vertebrates, the binding site for U2AF is the pyrimidine tract located between the branch point and 3′ splice site. Many small introns, especially those in nonvertebrates, lack a classical 3′ pyrimidine tract. Here we show that a 59-nucleotide Drosophila melanogaster intron contains C-rich pyrimidine tracts between the 5′ splice site and branch point that are needed for maximal binding of both U1 snRNPs and U2 snRNPs to the 5′ and 3′ splice site, respectively, suggesting that the tracts are the binding site for an intron bridging factor. The tracts are shown to bind both U2AF and the SR protein SRp54 but not SF1. Addition of a strong 3′ pyrimidine tract downstream of the branch point increases binding of SF1, but in this context, the upstream pyrimidine tracts are inhibitory. We suggest that U2AF- and/or SRp54-mediated intron bridging may be an alternative early recognition mode to SF1-directed bridging for small introns, suggesting gene-specific early spliceosome assembly.


2001 ◽  
Vol 12 (8) ◽  
pp. 2328-2340 ◽  
Author(s):  
Yaron Shav-Tal ◽  
Michal Cohen ◽  
Smadar Lapter ◽  
Billy Dye ◽  
James G. Patton ◽  
...  

The spatial nuclear organization of regulatory proteins often reflects their functional state. PSF, a factor essential for pre-mRNA splicing, is visualized by the B92 mAb as discrete nuclear foci, which disappeared during apoptosis. Because this mode of cell death entails protein degradation, it was considered that PSF, which like other splicing factors is sensitive to proteolysis, might be degraded. Nonetheless, during the apoptotic process, PSF remained intact and was N-terminally hyperphosphorylated on serine and threonine residues. Retarded gel migration profiles suggested differential phosphorylation of the molecule in mitosis vs. apoptosis and under-phosphorylation during blockage of cells at G1/S. Experiments with the use of recombinant GFP-tagged PSF provided evidence that in the course of apoptosis the antigenic epitopes of PSF are masked and that PSF reorganizes into globular nuclear structures. In apoptotic cells, PSF dissociated from PTB and bound new partners, including the U1–70K and SR proteins and therefore may acquire new functions.


1998 ◽  
Vol 18 (2) ◽  
pp. 676-684 ◽  
Author(s):  
Wan-Jiang Zhang ◽  
Jane Y. Wu

ABSTRACT Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.


Author(s):  
Reinhard Lührmann ◽  
Sven-Erik Behrens ◽  
Berthold Kastner

The major snRNPs, Ul, U2, U4/U6 and U5, are essential trans-acting factors in the pre-mRNA splicing process. They assemble with a pre-mRNA and a number of other non-snRNP splicing factors prior to the splicing reaction to form an active spliceosome. We are interested in investigating the biochemical composition of UsnRNPs and their ultrastructure as well as their function in splicing. In HeLa cell nuclear extracts the spliceosomal UsnRNPs exhibit differential association behaviour depending on the salt concentration. Thus, at high salt (420 mM) the majority of the Ul, U2, U4/U6 snRNPs migrates on sucrose gradients at 10-12S, while U5 snRNP sediments at 20S. Under in vitro splicing conditions (i.e. at about 100 mM salt), U5 and U4/U6 snRNPs form a 25 S [U4/U6.U5]tri-snRNP-complex and U2 snRNPs sediment at about 17 S.We have isolated the various types of UsnRNPs under native conditions using mainly immunoaffinity chromatography procedures. Today we can distinguish more than 35 distinct snRNP proteins. They can be grouped into two classes. The first class comprises eight common snRNP proteins which are present in each of the spliceosomal UsnRNPs. In addition, the individual snRNPs contain snRNP-specific proteins. These include three (70k, A, C) for the 12 S Ul snRNP, two (A′, B″ for the 12 S U2 snRNP, an additional eight for the 17 S U2 snRNP and eight for the 20 S U5 snRNP. The 25 S [U4/U6.U5]tri-snRNP-complex contains, in addition to the common proteins and the U5-specific proteins, a third group of six proteins which are essential for the stable formation of the tri-snRNP-complex. Thus, the different S-values of a particular snRNP particle result from differences in the population of snRNP-specific proteins associated with that particle.


2004 ◽  
Vol 15 (11) ◽  
pp. 4904-4910 ◽  
Author(s):  
Jaromíra Večeřová ◽  
Karel Koberna ◽  
Jan Malínský ◽  
Evi Soutoglou ◽  
Teresa Sullivan ◽  
...  

Nuclear lamins are major architectural elements of the mammalian cell nucleus, and they have been implicated in the functional organization of the nuclear interior, possibly by providing structural support for nuclear compartments. Colocalization studies have suggested a structural role for lamins in the formation and maintenance of pre-mRNA splicing factor compartments. Here, we have directly tested this hypothesis by analysis of embryonic fibroblasts from knock-out mice lacking A- and C-type lamins. We show that the morphology and cellular properties of splicing factor compartments are independent of A- and C-type lamins. Genetic loss of lamins A/C has no effect on the cellular distribution of several pre-mRNA splicing factors and does not affect the compartment morphology as examined by light and electron microscopy. The association of splicing factors with the nuclear matrix fraction persists in the absence of lamins A/C. Live cell microscopy demonstrates that the intranuclear positional stability of splicing factor compartments is maintained and that the exchange dynamics of SF2/ASF between the compartments and the nucleoplasm is not affected by loss of lamin A/C. Our results demonstrate that formation and maintenance of intranuclear splicing factor compartments is independent of lamins A/C, and they argue against an essential structural role of lamins A/C in splicing factor compartment morphology.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 880
Author(s):  
Mercedes Bentata ◽  
Guy Morgenstern ◽  
Yuval Nevo ◽  
Gillian Kay ◽  
Avital Granit Mizrahi ◽  
...  

Breast cancer is the second leading cause of death in women above 60 years in the US. Screening mammography is recommended for women above 50 years; however, 22% of breast cancer cases are diagnosed in women below this age. We set out to develop a test based on the detection of cell-free RNA from saliva. To this end, we sequenced RNA from a pool of ten women. The 1254 transcripts identified were enriched for genes with an annotation of alternative pre-mRNA splicing. Pre-mRNA splicing is a tightly regulated process and its misregulation in cancer cells promotes the formation of cancer-driving isoforms. For these reasons, we chose to focus on splicing factors as biomarkers for the early detection of breast cancer. We found that the level of the splicing factors is unique to each woman and consistent in the same woman at different time points. Next, we extracted RNA from 36 healthy subjects and 31 breast cancer patients. Recording the mRNA level of seven splicing factors in these samples demonstrated that the combination of all these factors is different in the two groups (p value = 0.005). Our results demonstrate a differential abundance of splicing factor mRNA in the saliva of breast cancer patients.


Sign in / Sign up

Export Citation Format

Share Document