scholarly journals Vector‐borne diseases and global warming: are both on an upward swing?

EMBO Reports ◽  
2001 ◽  
Vol 2 (9) ◽  
pp. 755-757 ◽  
Author(s):  
Vicki Brower
Author(s):  
Sherifa Mostafa M. Sabra ◽  
Samar Ahamed

The search conducted on "The impact of global warming (GW) on the public health (PH) increasing the bacterial causing infectious diseases (IDs) performed by experiment: Vector-borne diseases (VBDs) insects, Taif, KSA", the experiment used ants (Taif Tapinoma sessile), prepared, arranged appropriate nests and adjusted the temperature at (20, 25, 30, 35, 40 and 45°C), for a week of each zone. It revealed the behaviour as (normal, semi-normal and ab-normal), the mean of mortality rates were between (0-53.3%). The bacterial contents measured by the turbidity indicated the presence of multiplication, were between (0.109-0.328). The bacterial growth degrees by sings were between (+ - +++++) and percent between (12-100%). Colony Forming Unit/ml (CFU/ml) confined between (1.8X102-15.0X102)/mL. Through this experiment it turned out the GW had a significant role on the PH, helped the proliferation of bacterial pathogens that caused IDS. The conclusion wiped from the experiment that the extent degrees of GW disadvantages on the PH. The PH workers must take the "Preventive Health Prophylaxis Measures" (PHPMs) to protect the individuals from IDs by eliminating the VBDs of various types, monitoring the immunological situation of individuals, provided the vaccinations of IDs and preparing for complete PHPMs against any changes in the PH.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Randy Showstack

A report by the U.S. Global Change Research Program finds health risks from global warming tied to heat, air quality, vector-borne diseases, water issues, extreme weather, nutrition, and mental stress.


2009 ◽  
Vol 4 (5) ◽  
pp. 322-328 ◽  
Author(s):  
Tomohiko Takasaki ◽  
◽  
Akira Kotaki ◽  
Chang-Kweng Lim ◽  
Shigeru Tajima ◽  
...  

Arthropod-borne infections carried by mosquitoes and ticks are difficult to eradicate, once rooted, and have frequently caused wide-area epidemics such as dengue fever, West Nile fever, chikungunya fever, yellow fever, Japanese encephalitis and Rift Valley fever. Factors such as global warming and overpopulation have aggravated urban epidemics caused by dengue and chikungunya viruses. Measures against arthropods have their limitations, however, so nonepidemic areas must be protected against invasion by vector-borne diseases through quarantine, education and effective vaccination.


2008 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Mutsuo Kobayashi ◽  
◽  
Osamu Komagata ◽  
Naoko Nihei

Vector-borne diseases result from infections transmitted to humans by blood-feeding arthropods such as mosquitoes, ticks, and fleas. Such cold-blooded animals are influenced by environmental change. A recent IPCC report clearly showed that the emission of greenhouse gases has already changed world climates. Heat waves in Europe, rises in global mean sea level, summer droughts and wild fires, more intense precipitation, and increasing numbers of large cyclones and hurricanes may be typical example of extreme climate phenomena related to global warming. High temperatures may increase survival among arthropods, depending on their vector, behavior, ecology, and valuable factors, and temperate zone warming may accelerate the spread of mosquitoes such asAedes albopictus. The MIROK (K1) Model clearly shows a northern limit forAe.albopictus, particularly in northern Honshu in 2035 and southern and middle Hokkaido Island in 2100 in Japan. The spread of the mosquito vector through global used-tire trading in recent decades to Africa, the Mideast, Europe, and North and South America caused an outbreak of Chikungunya fever in north Italy in 2007. Global warming, extreme climate change, changing physical distribution, and an increase in oversea travel are also expected to influence the epidemiology of vector-borne infectious diseases.


2020 ◽  
Vol 11 (3) ◽  
pp. 361-404
Author(s):  
Bruno Moreira de Carvalho ◽  
Leticia Palazzi Perez ◽  
Beatriz Fatima Alves de Oliveira ◽  
Ludmilla da Silva Viana Jacobson ◽  
Marco Aurélio Horta ◽  
...  

Climate change affects human health either directly or indirectly, and related impacts are complex, non-linear, and depend on several variables. The various climate change impacts on health include a change in the spatial distribution of vector-borne diseases. In this regard, this study presents and discusses changes in the spatial distribution of climate suitability for visceral leishmaniasis, yellow fever and malaria in Brazil, in different global warming scenarios. Maximum entropy (MaxEnt) was used to construct climate suitability models in warming scenarios. Models were based in climate variables generated by the Eta-HadGEM2 ES regional model, in the baseline period 1965-2005 and RCP8.5 scenario, representing global warming levels of 1,5ºC (2011-2040), 2,0ºC (2041-2070) and 4,0ºC (2071-2099). The three diseases studied are largely influenced by climate and showed different distribution patterns within the country. In global warming scenarios, visceral leishmaniasis found more favorable climate conditions in the Southeastern and Southern regions of Brazil, while climate in the Northern and Center-West regions gradually became more favorable to yellow fever. In malaria scenarios, an increase in favorable climate conditions to its high incidence was observed in the Atlantic Forest, where currently extra-Amazonian cases occur. The scenarios presented herein represent different possible consequences for the health sector in terms of adopting (or not) different measures to mitigate climate change in Brazil, such as reducing the emission of greenhouse gases.  


2019 ◽  
Vol 30 (5) ◽  
pp. 192-194
Author(s):  
John (Luke) Lucas

The author considers the threat to vector-borne diseases in the light of climate change.


2020 ◽  
Vol 14 (1) ◽  
pp. 81-88
Author(s):  
Fedor I. Vasilevich ◽  
Anna M. Nikanorova

The purpose of the research is development of preventive measures against zooanthroponoze vector-borne diseases spread by parasitic arthropods in the Kaluga Region. Materials and methods. The subject of the research was Ixodidae, mosquitoes, and small mammals inhabiting the Kaluga Region. The census of parasitic arthropods was carried out on the territory of all districts of the Kaluga Region and the city of Kaluga. Open natural habitat and human settlements were investigated. Weather conditions from 2013 to 2018 were also taken into account. For the purposes of the study, we used standard methods for capturing and counting arthropods and mouse-like rodents. In order to obtain mathematical models of small mammal populations, a full factorial experiment was conducted using the collected statistical data. In-process testing of the drug based on s-fenvalerate and piperonyl butoxide were carried out under the conditions of the agricultural collective farm “Niva” of the Kozelsky District, the Kaluga Region, and LLC “Angus Center of Genetics” of the Babyninsky District, the Kaluga Region. Results and discussion. In the Kaluga Region, two species of ixodic ticks are found, namely, Ixodes ricinus and Dermacentor reticulatus, which have two activity peaks. Mosquito may have 3-4 generations in a year in the Kaluga region. The most common mosquito species in the Kaluga Region are Aedes communis, Ae. (Och.) togoi and Ae. (Och.) diantaeus, Culex pipiens Culex Linnaeus, 1758 (Diptera, Culicidae) (Culex pipiens): Cx. pipiens f. pipiens L. (non-autogenic form) and Cx. p. f. molestus Fors. (autogenic form), which interbreed, and reproductively isolated in the Region. The developed mathematical models make it possible to quantify the risks of outbreaks of zooanthroponoze vector-borne diseases without the cost of field research, and allow for rational, timely and effective preventive measures. Medications based on s-fenvalerate and piperonyl butoxide and based on cyfluthrin showed high insecto-acaricidal efficacy and safety.


Sign in / Sign up

Export Citation Format

Share Document