scholarly journals SIRT1 protects the heart against doxorubicin-induced cardiotoxicity by mediating the DNA damage response via deacetylation of histone H2AX

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Kuno ◽  
R Hosoda ◽  
Y Horio

Abstract Background Doxorubicin induces DNA damage not only in tumor cells but also in the cardiomyocyte, and accumulation of damaged DNA has been implicated in doxorubicin-induced cardiotoxicity. We previously found that cardiomyocyte-specific deletion of SIRT1, a NAD+-dependent histone/protein deacetylase, worsens doxorubicin-induced cardiotoxicity in mice. However, its molecular mechanism remains unclear. Phosphorylation of histone H2AX at Ser139 catalyzed by ATM (mutated in ataxia-telangiectasia) at the sites of DNA damage is a critical mediator for DNA repair. Purpose Here, we tested the hypothesis that deacetylation of H2AX by SIRT1 mediates DNA damage response to counteract doxorubicin-induced cardiotoxicity. Methods and results Wild-type (WT) mice and tamoxifen-inducible cardiomyocyte-specific SIRT1 knockout (SIRT1-cKO) mice at 3 month of age received doxorubicin (4 IP injections of 5 mg/kg/week) or a vehicle. Immunoblotting of myocardial lysates from mice 1 week after final doxorubicin showed that doxorubicin increased phospho-Ser139-H2AX level by 1.6-fold in WT, but such a response was blunted in SIRT1-cKO. Ser1981-phosphorylations of ATM induced by doxorubicin were similar in WT and SIRT1-cKO. DNA fragmentation evaluated by TUNEL staining revealed that the increase in TUNEL-positive nuclei by doxorubicin was more in SIRT1-cKO (0.13% to 0.38%) than those in WT (0.07% to 0.19%), suggesting higher DNA damage in SIRT1-cKO. In H9c2 cardiomyocytes, knockdown of SIRT1 also abolished the doxorubicin-induced Ser139-phosphorylation of H2AX without changing phospho-ATM levels. Increases in DNA damage evaluated by comet assay and cleavage of caspase-3 by doxorubicin were also enhanced in SIRT1-knockdown cells. Immunostaining for acetyl-Lys5-H2AX in the heart sections revealed that acetyl-Lys5-H2AX levels were increased in SIRT1-cKO by 58% compared with those in WT. In H9c2 cells, acetyl-Lys5-H2AX level was also increased by SIRT1 knockdown and reduced by expression of wild-type SIRT1. To test the role of the increased acetyl-Lys5-H2AX level under SIRT1 inhibition, we generated a mutant in which Lys5 was substituted to glutamine (K5Q H2AX) as a mimic of acetylated Lys5. In COS7 cells expressing WT or K5Q H2AX, Ser139-phosphorylation induced by doxorubicin was suppressed in K5Q mutant. In addition, doxorubicin-induced cleavage of caspase-3 was enhanced in H9c2 cells expressing K5Q H2AX as well as S139A H2AX, that cannot be phosphorylated at Ser139, compared with cells expressing WT H2AX. Conclusions These findings suggest that the increased Lys5 acetylation of H2AX via SIRT1 inhibition interferes Ser139 phosphorylation, leading to accumulation of damaged DNA and promotion of the apoptotic response. Such regulation of the DNA damage response contributes to protection by SIRT1 against doxorubicin-induced cardiotoxicity. FUNDunding Acknowledgement Type of funding sources: None.

2013 ◽  
Vol 288 (23) ◽  
pp. 16212-16224 ◽  
Author(s):  
Elvira Crescenzi ◽  
Zelinda Raia ◽  
Francesco Pacifico ◽  
Stefano Mellone ◽  
Fortunato Moscato ◽  
...  

Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.


2009 ◽  
Vol 186 (6) ◽  
pp. 835-847 ◽  
Author(s):  
Jurgen A. Marteijn ◽  
Simon Bekker-Jensen ◽  
Niels Mailand ◽  
Hannes Lans ◽  
Petra Schwertman ◽  
...  

Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 275-275
Author(s):  
Daniela Vorholt ◽  
Elena Izquierdo-Alvarez ◽  
Benedict Sackey ◽  
Jan Schmitz ◽  
Nadine Nickel ◽  
...  

Abstract The tumor microenvironment is characterized by multiple interactions of transformed malignant cells with non-transformed stroma or immune cells. Particularly macrophages play a pivotal role in this network determining disease progression and therapeutic response. In previous work we could show that macrophages are an essential mediator of therapeutic response in the synergistic response to the administration of the chemoimmunotherapy. The combination treatment strongly increases tumor clearance by repolarization of tumor-associated macrophages from a suppressive to an activated phenotypic state. Here, se analyzed the functional implications of the DNA damage response pathway for the generation of the ASAP and synergy in chemoimmunotherapy. We attempted to disrupt DNA damage response pathway in lymphoma cells generated from the hMB humanized Double-Hit-Lymphoma model by knock-down of key elements like ATM, DNA-PK or p53. We could prevent the formation of the stimulatory cytokine release effect on macrophage phagocytic capacity. Here, p53 status displays a key regulatory role on macrophage mediated malignant cell depletion. TP53 activation via Nutlin-3A treatment of lymphoma cell enhances ADCP in in p53 wild-type cells, while not displaying enhancement in p53-deficient lymphoma cells. Addressing the treatment in vivo using the hMB model for modeling of Double-Hit Lymphoma bearing mice we could demonstrate diminished ASAP and ADCP for p53-deficient lymphoma treated with cyclophosphamide in vivo. Using primary human CLL patient cells comparing both wild-type and p53-deficient status, the p53-deficient CLL cells failed to induce the stimulatory, cytokine-mediated effect on macrophage phagocytosis in response to combination treatment as seen with the p53 proficient CLL cells. Using a CLL mouse model by treating Eµ-TCL1/p53wt/wt as well as Eµ-TCL1p53-/- mice we could show that low-dose cyclophosphamide treated Eµ-TCL1p53-/- mice failed to induce an antibody mediated stimulatory effect on macrophage phagocytosis capacity as seen with Eµ-TCL1/p53wt/wt mice. A similar effect was seen for primary multiple myeloma cells in response to daratumumab displaying significantly less ADCP of p53-deficient multiple myeloma cells. As for the mechanism of p53-defined interaction within the tumor microenvironment we subjected p53-wild-type and p53-deficient lymphoma cells for proteomic analysis. Here we could identify a significantly deregulated protein expression profile for exosome release in p53 deficient lymphoma cells. Verifying this finding by assessing size and frequency exosomes released by respective cell populations we reveal profound changes induced by p53 loss. Furthermore we could identify up-regulation of PD-L1 in p53-deficient cells. Blocking this checkpoint in the ADCP assay could significantly restore phagocytic capacity of macrophages and overall therapeutic response. In this work, we indicate that p53 functional status determines phagocytic function and therapeutic response to monoclonal antibodies. We can verify this finding in independent models in vitro and in vivo as in primary CLL and myeloma patient cells. We furthermore identify altered exosome profiles and checkpoint inhibitor expression in lymphoma cells as underlying mechanism of macrophage modulation. Finally our ongoing research offers possibility to reveal and tailor new combinatorial treatment approaches for chemo-refractory patients. Disclosures Wendtner: Genetech: Consultancy, Honoraria, Other: travel support, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Other: travel support, Research Funding; Gilead: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Other: travel support, Research Funding; Pharmacyclics: Consultancy, Honoraria, Other: travel support, Research Funding; Abbvie: Consultancy, Honoraria, Other: travel support, Research Funding; MorphoSys: Consultancy, Honoraria, Other: travel support, Research Funding; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding; Roche: Consultancy, Honoraria, Other: travel support, Research Funding; Mundipharma: Consultancy, Honoraria, Research Funding. Hallek:Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; Pharmacyclics: Honoraria, Research Funding; Roche: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Abbvie: Honoraria, Research Funding. Pallasch:Gilead: Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 186-186
Author(s):  
Natalie B. Collins ◽  
Andrei Tomashevski ◽  
Gary M. Kupfer

Abstract Previous work in our lab and others has shown that the Fanconi anemia proteins, FANCG and FANCA, are phosphoproteins. FANCG is phosphorylated at mitosis, and these phosphorylations are required for proper exit from chromatin at mitosis. FANCG is also phosphorylated after DNA damage, with the phosphorylation site required for wild-type sensitivity to DNA damaging agents. FANCA is also phosphorylated after DNA damage and localized to chromatin, but the site and significance of this phosphorylation were previously unknown. Mass spectrometry of FANCA revealed one phosphopeptide with phosphorylation on serine 1449. Site-directed mutagenesis of this residue to alanine (S1449A) abolished a slower mobility form of FANCA seen after MMC treatment. Furthermore, the S1449A mutant failed to completely correct the MMC hypersensitivity of FA-A mutant cells. S1449A mutant cells displayed lower than wild-type levels of FANCD2 monoubiquitination following DNA damage, and an increased number of gross chromosomal aberrations were seen in metaphase spreads from S1449A mutant cells when compared to wild type cells. Using a GFP reporter substrate to measure homologous recombination, cells expressing the S1449A FANCA failed to completely correct the homologous recombination defect seen in FA cells. Taken together, cells expressing FANCA S1449A display a variety of FA-associated phenotypes, suggesting that the phosphorylation of S1449 is a functionally significant event. The DNA damage response in human cells is, in large part, coordinated by phosphorylation events initiated by apical kinases ATM and ATR. S1449 is found in a consensus ATM site, therefore studies are underway to determine if ATM or ATR is the kinase responsible for FANCA phosphorylation at S1449. Phosphorylation is a crucial process in transducing the DNA damage response, and phosphorylation of FA proteins appears critical to both localization and function of the proteins. Understanding how phosphorylation marks are placed on FANCA will give insight into the role of FANCA in the DNA damage response.


Cell Cycle ◽  
2007 ◽  
Vol 6 (18) ◽  
pp. 2310-2313 ◽  
Author(s):  
Ronan T. Bree ◽  
Xian-Yang Lai ◽  
Lynn E. Canavan ◽  
Noel F. Lowndes

Cancer Cell ◽  
2014 ◽  
Vol 25 (2) ◽  
pp. 243-256 ◽  
Author(s):  
Elda Grabocka ◽  
Yuliya Pylayeva-Gupta ◽  
Mathew J.K. Jones ◽  
Veronica Lubkov ◽  
Eyoel Yemanaberhan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document