scholarly journals Whole exome sequencing (WES) in a patient with a cardiac conduction defect and ventricular arrhythmias

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P2296-P2296
Author(s):  
C. Friedrich ◽  
S. Rinne ◽  
S. Zumhagen ◽  
M. Netter ◽  
B. Stallmeyer ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yi Dong ◽  
Ran Du ◽  
Liang-liang Fan ◽  
Jie-yuan Jin ◽  
Hao Huang ◽  
...  

Atrioventricular block (AVB) is a leading cause of sudden cardiac death, and most of AVB cases are presented as autosomal dominant. The electrocardiogram of AVB patients presents an abnormal progressive cardiac conduction disorder between atria and ventricles. Transient receptor potential melastatin 4 (TRPM4) is a nonselective Ca2+-activated cation channel gene defined as a novel disease-causing gene of AVB. So far, 47 mutations of TRPM4 have been recorded in Human Gene Mutation Database. The aim of this study was to explore the relationship between TRPM4 mutation and pathogenesis of AVB. We investigated a Chinese family with AVB by whole-exome sequencing. An arrhythmia-related gene filtering strategy was used to analyze the disease-causing mutations. Three different bioinformatics programs were used to predict the effects of the mutation result. A novel mutation of TRPM4 was identified (c.2455C>T/p.R819C) and cosegregated in the affected family members. The three bioinformatics programs predicted that the novel mutation may lead to damage. Our study will contribute to expand the spectrum of TRPM4 mutations and supply accurate genetic testing information for further research and the clinical therapy of AVB.


2019 ◽  
Vol 20 (24) ◽  
pp. 6227 ◽  
Author(s):  
Lung-An Hsu ◽  
Yu-Shien Ko ◽  
Yung-Hsin Yeh ◽  
Chi-Jen Chang ◽  
Yi-Hsin Chan ◽  
...  

Inherited cardiac conduction disease (CCD) is rare; it is caused by a large number of mutations in genes encoding cardiac ion channels and cytoskeletal proteins. Recently, whole-exome sequencing has been successfully used to identify causal mutations for rare monogenic Mendelian diseases. We used trio-based whole-exome sequencing to study a Chinese family with multiple family members affected by CCD, and identified a heterozygous missense mutation (c.343C>T, p.Leu115Phe) in the desmin (DES) gene as the most likely candidate causal mutation for the development of CCD in this family. The mutation is novel and is predicted to affect the conformation of the coiled-coil rod domain of DES according to structural model prediction. Its pathogenicity in desmin protein aggregation was further confirmed by expressing the mutation, both in a cellular model and a CRISPR/CAS9 knock-in mouse model. In conclusion, our results suggest that whole-exome sequencing is a feasible approach to identify candidate genes underlying inherited conduction diseases.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e83322 ◽  
Author(s):  
Chun-Chi Lai ◽  
Yung-Hsin Yeh ◽  
Wen-Ping Hsieh ◽  
Chi-Tai Kuo ◽  
Wen-Ching Wang ◽  
...  

2014 ◽  
Vol 62 (S 02) ◽  
Author(s):  
M. Hitz ◽  
S. Al-Turki ◽  
A. Schalinski ◽  
U. Bauer ◽  
T. Pickardt ◽  
...  

2018 ◽  
Author(s):  
Yasemin Dincer ◽  
Michael Zech ◽  
Matias Wagner ◽  
Nikolai Jung ◽  
Volker Mall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document