scholarly journals P2570Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after

2017 ◽  
Vol 38 (suppl_1) ◽  
Author(s):  
S. Chua ◽  
P.L. Shao ◽  
P.H. Sung ◽  
J.J. Sheu ◽  
S. Leu ◽  
...  
2010 ◽  
Vol 8 (1) ◽  
pp. 63 ◽  
Author(s):  
Steve Leu ◽  
Yu-Chun Lin ◽  
Chun-Man Yuen ◽  
Chia-Hung Yen ◽  
Ying-Hsien Kao ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuejiao Li ◽  
Yankai Dong ◽  
Ye Ran ◽  
Yanan Zhang ◽  
Boyao Wu ◽  
...  

Abstract Background We show previously that three-dimensional (3D) spheroid cultured mesenchymal stem cells (MSCs) exhibit reduced cell size thus devoid of lung entrapment following intravenous (IV) infusion. In this study, we determined the therapeutic effect of 3D-cultured MSCs on ischemic stroke and investigated the mechanisms involved. Methods Rats underwent middle cerebral artery occlusion (MCAO) and reperfusion. 1 × 106 of 3D- or 2D-cultured MSCs, which were pre-labeled with GFP, were injected through the tail vain three and seven days after MCAO. Two days after infusion, MSC engraftment into the ischemic brain tissues was assessed by histological analysis for GFP-expressing cells, and infarct volume was determined by MRI. Microglia in the lesion were sorted and subjected to gene expressional analysis by RNA-seq. Results We found that infusion of 3D-cultured MSCs significantly reduced the infarct volume of the brain with increased engraftment of the cells into the ischemic tissue, compared to 2D-cultured MSCs. Accordingly, in the brain lesion of 3D MSC-treated animals, there were significantly reduced numbers of amoeboid microglia and decreased levels of proinflammatory cytokines, indicating attenuated activation of the microglia. RNA-seq of microglia derived from the lesions suggested that 3D-cultured MSCs decreased the response of microglia to the ischemic insult. Interestingly, we observed a decreased expression of mincle, a damage-associated molecular patterns (DAMPs) receptor, which induces the production of proinflammatory cytokines, suggestive of a potential mechanism in 3D MSC-mediated enhanced repair to ischemic stroke. Conclusions Our data indicate that 3D-cultured MSCs exhibit enhanced repair to ischemic stroke, probably through a suppression to ischemia-induced microglial activation.


2021 ◽  
Author(s):  
Hui Hu ◽  
xiaowei Hu ◽  
lin Li ◽  
Jingjing Gu ◽  
Yan Fang ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) transplantation is a potential clinical therapy for cerebral ischemia. The therapeutic effects of MSCs primarily depends on the paracrine action by releasing exosomes (Exos). Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) could modulate target cell functions by transferring microRNAs (miRs) cargo. In this study, we aimed to investigate whether BMSC-Exos could promote angiogenesis via transfer of miR-21-5p after cerebral ischemia. Methods BMSC-Exos were isolated from conditioned medium of BMSCs by differential ultracentrifugation, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blot analysis. In mice with middle cerebral artery occlusion (MCAO), the neurological function was evaluated by Zea Longa’s method, and the infarct volume and microvessel density were detected by TTC staining and vWF immunofluorescence staining, respectively. The proangiogenic effects of BMSC-Exos were assessed via proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro assays. The miR-21-5p expression was detected by qRT-PCR. The expression levels of VEGF, VEGFR2, Ang-1, and Tie-2 were determined by western blot. Results BMSC-Exos significantly improved neurological function and reduced infract volume after cerebral ischemia. Moreover, BMSC-Exos significantly upregulated the microvessel density and the expression levels of proangiogenic proteins VEGF, VEGFR2, Ang-1 and Tie-2 in the ischemic boundary region. MiR-21-5p expression was also dramatically increased after cerebral ischemia. In vitro assays revealed that BMSC-Exos enhanced HUVECs functions including proliferation, migration and tube formation, as well as increasing the expression of VEGF and VEGFR2. However, these proangiogenic effects of BMSC-Exos on HUVECs were reversed by miR-21-5p inhibitor. Conclusion Our study indicated that BMSC-Exos could promote angiogenesis and neurological function recovery via transfer of miR-21-5p. Therefore, the application of miR-21-5p-loaded BMSC-Exos might be an attractive treatment strategy of cerebral ischemia.


2020 ◽  
Vol 21 (8) ◽  
pp. 2845 ◽  
Author(s):  
John Brown ◽  
You Jeong Park ◽  
Jea-Young Lee ◽  
Thomas N. Chase ◽  
Minako Koga ◽  
...  

Human mesenchymal stem cells have been explored for their application in cell-based therapies targeting stroke. Identifying cell lines that stand as safe, accessible, and effective for transplantation, while optimizing dosage, timing, and method of delivery remain critical translational steps towards clinical trials. Preclinical studies using bone marrow-derived NCS-01 cells show the cells’ ability to confer functional recovery in ischemic stroke. Coculturing primary rat cortical cells or human neural progenitor cells with NCS-01 cells protects against oxygen-glucose deprivation. In the rodent middle cerebral artery occlusion model, intracarotid artery administration of NCS-01 cells demonstrate greater efficacy than other mesenchymal stem cells (MSCs) at improving motor and neurological function, as well as reducing infarct volume and peri-infarct cell loss. NCS-01 cells secrete therapeutic factors, including basic fibroblast growth factor and interleukin-6, while also demonstrating a potentially novel mechanism of extending filopodia towards the site of injury. In this review, we discuss recent preclinical advancements using in vitro and in vivo ischemia models that support the transplantation of NCS-01 in human stroke trials. These results, coupled with the recommendations put forth by the consortium of Stem cell Therapeutics as an Emerging Paradigm for Stroke (STEPS), highlight a framework for conducting preclinical research with the ultimate goal of initiating clinical trials.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ke Wu ◽  
Dongdong Huang ◽  
Can Zhu ◽  
Ella A. Kasanga ◽  
Ying Zhang ◽  
...  

Abstract Background The attainment of extensive neurological function recovery remains the key challenge for the treatment of traumatic brain injury (TBI). Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been shown to improve neurological function recovery after TBI. However, the survival of BMSCs after transplantation in early-stage TBI is limited, and much is unknown about the mechanisms mediating this neurological function recovery. Secretion of neurotrophic factors, including neurotrophin 3 (NT3), is one of the critical factors mediating BMSC neurological function recovery. Gene mutation of NT3 (NT3P75-2) has been shown to enhance the biological function of NT3 via the reduction of the activation of the P75 signal pathway. Thus, we investigated whether NT3P75-2 gene-modified BMSCs could enhance the survival of BMSCs and further improve neurological function recovery after TBI. Methods The ability of NT3P75-2 induction to improve cell growth rate of NSC-34 and PC12 cells in vitro was first determined. BMSCs were then infected with three different lentiviruses (green fluorescent protein (GFP), GFP-NT3, or GFP-NT3P75-2), which stably express GFP, GFP-NT3, or GFP-NT3P75-2. At 24 h post-TBI induction in mice, GFP-labeled BMSCs were locally transplanted into the lesion site. Immunofluorescence and histopathology were performed at 1, 3, and/or 7 days after transplantation to evaluate the survival of BMSCs as well as the lesion volume. A modified neurological severity scoring system and the rotarod test were chosen to evaluate the functional recovery of the mice. Cell growth rate, glial activation, and signaling pathway analyses were performed to determine the potential mechanisms of NT3P75-2 in functional recovery after TBI. Results Overall, NT3P75-2 improved cell growth rate of NSC-34 and PC12 cells in vitro. In addition, NT3P75-2 significantly improved the survival of transplanted BMSCs and neurological function recovery after TBI. Overexpression of NT3P75-2 led to a significant reduction in the activation of glial cells, brain water content, and brain lesion volume after TBI. This was associated with a reduced activation of the p75 neurotrophin receptor (P75NTR) and the c-Jun N-terminal kinase (JNK) signal pathway due to the low affinity of NT3P75-2 for the receptor. Conclusions Taken together, our results demonstrate that administration of NT3P75-2 gene-modified BMSCs dramatically improves neurological function recovery after TBI by increasing the survival of BMSCs and ameliorating the inflammatory environment, providing a new promising treatment strategy for TBI.


2019 ◽  
Vol 78 (10) ◽  
pp. 949-960 ◽  
Author(s):  
Kun-Chen Lin ◽  
Kuan-Hung Chen ◽  
Christopher Glenn Wallace ◽  
Yi-Ling Chen ◽  
Sheung-Fat Ko ◽  
...  

Abstract This study tested the hypothesis that combined hyperbaric oxygen (HBO) and melatonin (Mel) was superior to either one for protecting the brain functional and parenchymal integrity from acute ischemic stroke (IS) injury. Adult-male Sprague-Dawley rats were divided into groups 1 (sham-operated control), 2 (IS), 3 (IS + HBO), 4 (IS + Mel), and 5 (IS + HBO-Mel). By day 28 after IS, the brain infarct area (BIA) was lowest in group 1, highest in group 2, significantly higher in groups 3 and 4 than in group 5, but not different between groups 3 and 4. The neurological function at day 7, 14, and 28 exhibited an opposite pattern to BIA among the 5 groups. The protein expressions of inflammatory (IL-1β/IL-6/iNOS/TNF-α/p-NF-κB), apoptotic (cleaved-caspase3/cleaved-PARP/mitochondrial Bax), mitochondrial/DNA-damaged (cytochrome-C/γ-H2AX), oxidative stress (NOX-1/NOX-2), and autophagy (i.e. ratio of CL3B-II/CL3B-I) biomarkers displayed an identical pattern of BIA among 5 groups. Cellular expressions of inflammation (F4/80+/GFAP+) and DNA-damaged biomarker (γ-H2AX+) exhibited an identical pattern, whereas the integrities of myelin sheath/neuron (MPB+/NeuN+), endothelial cell (CD31+/vWF+), and number of small vessels exhibited an opposite pattern of BIA among the 5 groups. Combined HBO-Mel therapy offered an additional benefit in protecting the brain against IS injury.


Sign in / Sign up

Export Citation Format

Share Document