P6547The energy cost of His bundle pacing can be curtailed

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
F Zanon ◽  
L Marcantoni ◽  
G Pastore ◽  
E Baracca ◽  
C Picariello ◽  
...  

Abstract Introduction His bundle pacing (HBP) allows physiological ventricular activation and prevents the electrical and mechanical desynchronization generally induced by myocardial stimulation, which can increase the risk of atrial fibrillation and heart failure. On the other hand, reliable HBP capture often requires higher energy than conventional myocardial pacing. This reduces the expected life of the stimulator and might limit the diffusion of HBP in the clinical practice. Purpose Decreasing HBP current drain by careful management of stimulation safety margin and pulse duration. Methods In 28 patients undergoing DDD pacing with HBP, a third lead was implanted in RV apex to provide back-up pacing on demand. HBP and apical leads were connected, respectively, to the V1 and V2 channels of a 3-chamber stimulator. When HBP was effective, apical sensing occurred within the VV delay and prevented V2 stimulation. In contrast, in case of HBP failure, V2 sensing was missing and apical back-up pacing was promptly delivered at the end of the VV delay. The availability of a back-up pulse on demand allowed reducing the HBP safety margin with no risk. Furthermore, the individual HBP strength-duration curve was derived in the aim of optimizing the Hisian pulse parameters, which are the major determinants of the device current drain. Results Correct back-up inhibition by successful HBP and stimulation in the event of capture loss was achieved in all the patients. The latency from Hisian pacing to apical sensing averaged 96±14 ms. According to the pacemaker counters, no back-up pulse was delivered in daily life in 59% of patients. In the remaining, the prevalence of back-up stimulation never exceeded 15% of paced ventricular cycles. The high HBP threshold was essentially due to an increased rheobase (1.2±0.6 V), while the chronaxie ranged from 0.30 to 0.53 ms in 71% of patients (median 0.44 ms), exceeding 0.6 ms only in 29% of the cases. An average current saving of 5.4±3.0 μA was obtained at the expense of a mild reduction in HBP safety margin (from 1.6±0.2 to 1.4±0.1 times). HBP and apical back-up Conclusions Back-up stimulation on demand is a reliable option to decrease HBP current drain and prolong the stimulator service life with full safety. In most of the cases, significant saving can be achieved by pulse shortening, as the chronaxie time is in the same range as with myocardial stimulation and longer pulses are not required. A pulse duration exceeding 0.6 ms is indicated in less than 1/3 of the implants.

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S27
Author(s):  
Ahran Arnold ◽  
Matthew J. Shun-Shin ◽  
Daniel Keene ◽  
James P. Howard ◽  
Ji-Jian Chow ◽  
...  

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Arnold ◽  
MJ Shun-Shin ◽  
D Keene ◽  
JP Howard ◽  
J Chow ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public Institution(s). Main funding source(s): British Heart Foundation Background: His bundle pacing can be achieved in two ways selective His bundle pacing, where the His bundle is captured alone, and non-selective His bundle pacing, where local myocardium is also captured resulting a pre-excited ECG appearance. We assessed the impact of this ventricular pre-excitation on left and right ventricular dys-synchrony. Methods We recruited patients who displayed both selective and non-selective His bundle pacing. We performed non-invasive epicardial electrical mapping to determine left and right ventricular activation times and patterns. Results In the primary analysis (n = 20, all patients), non-selective His bundle pacing did not prolong LVAT compared to select His bundle pacing by a pre-specified non-inferiority margin of 10ms (LVAT prolongation: -5.5ms, 95% confidence interval (CI): -0.6 to -10.4, non-inferiority p < 0.0001). Non-selective His bundle pacing did not prolong right ventricular activation time (4.3ms, 95%CI: -4.0 to 12.8, p = 0.296) but did prolong QRS duration (22.1ms, 95%CI: 11.8 to 32.4, p = 0.0003). In patients with narrow intrinsic QRS (n = 6), non-selective His bundle pacing preserved left ventricular activation time (-2.9ms, 95%CI: -9.7 to 4.0, p = 0.331) but prolonged QRS duration (31.4ms, 95%CI: 22.0 to 40.7, p = 0.0003) and mean right ventricular activation time (16.8ms, 95%CI: -5.3 to 38.9, p = 0.108) compared to selective His bundle pacing. Activation pattern of the left ventricular surface was unchanged between selective and non-selective His bundle pacing. Non-selective His bundle pacing produced early basal right ventricular activation, which was not observed with selective His bundle pacing. Conclusions Compared to selective His bundle pacing, local myocardial capture during non-selective His bundle pacing produces right ventricular pre-excitation resulting in prolongation of QRS duration. However, non-selective His bundle pacing preserves the left ventricular activation time and pattern of selective His bundle pacing. When choosing between selective and non-selective His bundle pacing, left ventricular dyssynchrony is not an important factor. Abstract Figure: Selective vs Non-Selective HBP


Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S292
Author(s):  
Toshiaki Sato ◽  
Kyoko Soejima ◽  
Takato Mohri ◽  
Yumi Katsume ◽  
Mika Tashiro ◽  
...  

2021 ◽  
Author(s):  
Ahran D. Arnold ◽  
Matthew J. Shun-Shin ◽  
Nadine Ali ◽  
Daniel Keene ◽  
James P. Howard ◽  
...  

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S446
Author(s):  
Rehan Mahmud ◽  
Stacey Kukla ◽  
Brenda Harris ◽  
Brittany Phillips ◽  
Sharon Hakes

2019 ◽  
Author(s):  
Marek Jastrzębski ◽  
Paweł Moskal ◽  
Agnieszka Bednarek ◽  
Grzegorz Kiełbasa ◽  
Pugazhendhi Vijayaraman ◽  
...  

AbstractBackgroundStrength-duration curves for permanent His bundle (HB) pacing are potentially important for pacemaker programming.ObjectiveWe aimed to calculate strength-duration curve and chronaxie of the His bundle (HB) and of the adjacent right ventricular (RV) working myocardium and to analyze zones of selective HB capture and battery current drain when pacing at different pulse durations (PDs).MethodsConsecutive patients with permanent HB pacing were studied. The RV and HB capture thresholds were assessed at several PDs. Battery current drain and zones of selective HB capture at PDs of 0.1, 0.2, 0.4 and 1.0 ms were determined.ResultsIn the whole group (n =127) the HB chronaxie was shorter than the RV chronaxie. This difference was driven by patients with selective HB pacing (HB chronaxie of 0.47 vs RV chronaxie of 0.79 ms). Strength-duration curve for HB had lower rheobase and its steep portion started at shorter PDs thus creating wider distance - zone of programmable selective HB pacing - between the HB and RV strength-duration curves at shorter PDs. The battery current drain was lower with pacing at PDs of 0.1 - 0.4 ms vs 1.0 ms. Chronaxie adjusted PDs offered lowest current drain.ConclusionFor the first time the strength-duration curves for permanent selective and non-selective HB pacing were determined. Selective HB capture and battery longevity can be promoted by shorter PDs (0.2 ms). Longer PDs (1.0 ms) offer bigger safety margin for RV capture and may be preferable if simultaneous RV capture during HB pacing is desired.


2020 ◽  
Vol 17 (5) ◽  
pp. 288-298
Author(s):  
Nadine Ali ◽  
Mathew Shun Shin ◽  
Zachary Whinnett

Abstract Purpose of Review The aim of cardiac resynchronization therapy (CRT) is to improve cardiac function by delivering more physiological cardiac activation to patients with heart failure and conduction abnormalities. Biventricular pacing (BVP) is the most commonly used method for delivering CRT; it has been shown in large randomized controlled trials to significantly improve morbidity and mortality in patients with heart failure. However, BVP delivers only modest reductions in ventricular activation time and is only beneficial in patients with prolonged QRS duration. In this review, we explore conduction system pacing as a method for delivering more effective ventricular resynchronization and to extend pacing therapy for heart failure to patients without left bundle branch block (LBBB). Recent Findings The aim of conduction system pacing is to provide physiological ventricular activation by directly stimulating the conduction system. Current modalities include His bundle and left conduction system pacing. His bundle pacing is the most established method; it has the potential to correct left bundle branch block and deliver more effective ventricular resynchronization than BVP. This translates into greater acute haemodynamic improvements and observational data suggests that His-CRT results in improvements in cardiac function and symptoms. AV-optimized His bundle pacing is being investigated in patients with heart failure and long PR interval without LBBB, to see if this improves exercise capacity. More recently, a technique for pacing the left bundle branch has been developed. Early studies show potential advantages including low and stable capture thresholds. Summary Conduction system pacing can deliver more effective ventricular resynchronization than BVP, which has the potential to deliver greater improvements in cardiac function. It may also provide the opportunity to extend pacing therapy for heart failure to patients who do not have LBBB. Further data is required from randomized trials to assess these promising pacing techniques.


Sign in / Sign up

Export Citation Format

Share Document