P613Cardiac magnetic resonance imaging derived left ventricular mechanical function in patients with atrial fibrillation and left atrial low voltage zones

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Ulbrich ◽  
R S Schoenbauer ◽  
B Kirstein ◽  
J Tomala ◽  
Y Huo ◽  
...  

Abstract Background The relation of left atrial low voltage zones (LVZ) to left ventricular function in patients undergoing pulmonary vein isolation (PVI) is not known. Objective To explore the relationship of left atrial low voltage zones (LVZ) on left ventricular function in patients with atrial fibrillation. Methods From June to Nov. 2018, 107 (mean age 67y, 70 men, 73 persistent AF) consecutive patients with symptomatic AF underwent a PVI with LVZ mapping. Before PVI the left ventricular ejection fraction (EF) and stroke volume (SV) were measured by cardiac magnetic resonance imaging (CMR). From feature-tracking of CMR-cine images left ventricular global, systolic and diastolic longitudinal strains (GLS), circumferential strains (GCS) and radial strains (GRS) were calculated. Results Of 59 patients CMR scanning in sinus rhythm was performed, LVZ were present in 24 patients. LVEF was significantly lower in patients with left atrial LVZ (62±9% vs. 55±15%) (p=0,03). Left ventricular stroke volume was significantly decreased by the extent of LVZ (94±23 vs. 72±21ml), (p=0,03). The left ventricular diastolic strains during ventricular filling (caused by atrial contraction) of GLS (r=−0,52), GCS (r=−0,65) and GRS (r=−0,65) were highly signifcantly correlated to the occurence and extent of LVZ (each p<0,001 respectively). The only systolic ventricular strain was GLS, which decreased (r=−0,3, p=0,03) by the occurance of atrial low voltage. Conclusion The active, atrial part of diastolic left ventricular filling properties is impaired by the occurrence and extent of left atrial LVZ. In patients with left atrial LVZ the left ventricular stroke volume and ejection fraction is decreased already in sinus rhythm. It seems possible that atrial mechanical dysfunction and presence of atrial low voltage maybe predicted by LV diastolic strain analysis.

EP Europace ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1484-1493 ◽  
Author(s):  
Juan Chen ◽  
Thomas Arentz ◽  
Hubert Cochet ◽  
Björn Müller-Edenborn ◽  
Steven Kim ◽  
...  

Abstract Aims Atrial fibrosis contributes to arrhythmogenesis in atrial fibrillation and can be detected by MRI or electrophysiological mapping. The current study compares the spatial correlation between delayed enhancement (DE) areas to low-voltage areas (LVAs) and to arrhythmogenic areas with spatio-temporal dispersion (ST-Disp) or continuous activity (CA) in atrial fibrillation (AF). Methods and results Sixteen patients with persistent AF (nine long-standing) underwent DE-magnetic resonance imaging (1.25 mm × 1.25 mm × 2.5 mm) prior to pulmonary vein isolation. Left atrial (LA) voltage mapping was acquired in AF and the regional activation patterns of 7680 AF wavelets were analysed. Sites with ST-Disp or CA were characterized (voltage, duration) and their spatial relationship to DE areas and LVAs <0.5 mV was assessed. Delayed enhancement areas and LVAs covered 55% and 24% (P < 0.01) of total LA surface, respectively. Delayed enhancement area was present at 61% of LVAs, whereas low voltage was present at 28% of DE areas. Most DE areas (72%) overlapped with atrial high-voltage areas (>0.5 mV). Spatio-temporal dispersion and CA more frequently co-localized with LVAs than with DE areas (78% vs. 63%, P = 0.02). Regional bipolar voltage of ST-Disp vs. CA was 0.64 ± 0.47 mV vs. 0.58 ± 0.51 mV. All 28 ST-Disp and 56 CA areas contained electrograms with prolonged duration (115 ± 14 ms) displaying low voltage (0.34 ± 0.11 mV). Conclusion A small portion of DE areas and LVAs harbour the arrhythmogenic areas displaying ST-Disp or CA. Most arrhythmogenic activities co-localized with LVAs, while there was less co-localization with DE areas. There is an important mismatch between DE areas and LVAs which needs to be considered when used as target for catheter ablation.


2008 ◽  
Vol 52 (15) ◽  
pp. 1263-1271 ◽  
Author(s):  
Christopher J. McGann ◽  
Eugene G. Kholmovski ◽  
Robert S. Oakes ◽  
Joshua J.E. Blauer ◽  
Marcos Daccarett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document