scholarly journals Impact of exercise training on myostatin expression in the myocardium and skeletal muscle in a chronic heart failure model

2009 ◽  
Vol 11 (4) ◽  
pp. 342-348 ◽  
Author(s):  
Karsten Lenk ◽  
Robert Schur ◽  
Axel Linke ◽  
Sandra Erbs ◽  
Yasuharu Matsumoto ◽  
...  
2003 ◽  
Vol 94 (6) ◽  
pp. 2225-2236 ◽  
Author(s):  
Bryan Helwig ◽  
Katherine M. Schreurs ◽  
Joslyn Hansen ◽  
K. Sue Hageman ◽  
Michael G. Zbreski ◽  
...  

The mechanisms responsible for the decrements in exercise performance in chronic heart failure (CHF) remain poorly understood, but it has been suggested that sarcolemmal alterations could contribute to the early onset of muscular fatigue. Previously, our laboratory demonstrated that the maximal number of ouabain binding sites (Bmax) is reduced in the skeletal muscle of rats with CHF (Musch TI, Wolfram S, Hageman KS, and Pickar JG. J Appl Physiol 92: 2326–2334, 2002). These reductions may coincide with changes in the Na+-K+-ATPase isoform (α and β) expression. In the present study, we tested the hypothesis that reductions in Bmax would coincide with alterations in the α- and β-subunit expression of the sarcolemmal Na+-K+-ATPase of rats with CHF. Moreover, we tested the hypothesis that exercise training would increase Bmax along with producing significant changes in α- and β-subunit expression. Rats underwent a sham operation (sham; n = 10) or a surgically induced myocardial infarction followed by random assignment to either a control (MI; n = 16) or exercise training group (MI-T; n = 16). The MI-T rats performed exercise training (ET) for 6–8 wk. Hemodynamic indexes demonstrated that MI and MI-T rats suffered from severe left ventricular dysfunction and congestive CHF. Maximal oxygen uptake (V˙o 2 max) and endurance capacity (run time to fatigue) were reduced in MI rats compared with sham. Bmax in the soleus and plantaris muscles and the expression of the α2-isoform of the Na+-K+-ATPase in the red portion of the gastrocnemius (gastrocnemiusred) muscle were reduced in MI rats. After ET, V˙o 2 max and run time to fatigue were increased in the MI-T group of rats. This coincided with increases in soleus and plantaris Bmax and the expression of the α2-isoform in the gastrocnemiusred muscle. In addition, the expression of the β2-isoform of the gastrocnemiusred muscle was increased in the MI-T rats compared with their sedentary counterparts. This study demonstrates that CHF-induced alterations in skeletal muscle Na+-K+-ATPase, including Bmax and isoform expression, can be partially reversed by ET.


Heart ◽  
2011 ◽  
Vol 97 (17) ◽  
pp. 1403-1409 ◽  
Author(s):  
A. M. Van Berendoncks ◽  
A. Garnier ◽  
P. Beckers ◽  
V. Y. Hoymans ◽  
N. Possemiers ◽  
...  

2011 ◽  
Vol 19 (3) ◽  
pp. 404-411 ◽  
Author(s):  
Karsten Lenk ◽  
Sandra Erbs ◽  
Robert Höllriegel ◽  
Ephraim Beck ◽  
Axel Linke ◽  
...  

Background: In chronic heart failure (CHF), cardiac cachexia is often associated with the terminal stage of this disease. In animal studies it has been demonstrated that myostatin, a key regulator of skeletal muscle mass, is elevated in advanced stages of this syndrome. Design: The aim of the present study was to investigate the expression of myostatin in patients with late stage CHF (NYHA IIIb) in comparison to healthy subjects. Furthermore the effects of physical exercise on myostatin were analyzed. Methods: Twenty-four patients were either randomized to a sedentary control group (CHF-S) or exercise training (CHF-E). At baseline and after 12 weeks mRNA and myostatin protein in the peripheral skeletal muscle as well as myostatin serum concentration were measured. Furthermore 12 age-matched healthy men were compared to all patients at baseline (HC). Results: CHF patients showed a two-fold increase of myostatin mRNA ( p = 0.05) and a 1.7-fold ( p = 0.01) augmentation of protein content in skeletal muscle compared to healthy subjects. In late-stage CHF, exercise training led to a 36% reduction of the mRNA and a 23% decrease of the myostatin protein compared to baseline. The serum concentration of myostatin revealed no significant alteration between the groups. Conclusion: In the skeletal muscle, myostatin increases significantly in the course of CHF. The observed effects of a significant reduction of myostatin in skeletal muscle after 12 weeks of exercise training demonstrate the reversibility of molecular changes that might be able to halt the devastating process of muscle wasting in chronic heart failure.


2013 ◽  
Vol 168 (4) ◽  
pp. 3334-3339 ◽  
Author(s):  
Aderville Cabassi ◽  
Jacques de Champlain ◽  
Umberto Maggiore ◽  
Elisabetta Parenti ◽  
Pietro Coghi ◽  
...  

2015 ◽  
Vol 309 (9) ◽  
pp. H1419-H1439 ◽  
Author(s):  
Daniel M. Hirai ◽  
Timothy I. Musch ◽  
David C. Poole

Chronic heart failure (CHF) impairs critical structural and functional components of the O2transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2delivery and utilization ( Q̇mO2and V̇mO2, respectively). The Q̇mO2/ V̇mO2ratio determines the microvascular O2partial pressure (PmvO2), which represents the ultimate force driving blood-myocyte O2flux (see Fig. 1). Improvements in perfusive and diffusive O2conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2/ V̇mO2matching (and enhanced PmvO2) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2convection within the skeletal muscle microcirculation, O2diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients.


Author(s):  
Rainer Hambrecht ◽  
Paul Christian Schulze ◽  
Stephan Gielen ◽  
Axel Linke ◽  
Sven Möbius-Winkler ◽  
...  

Background Chronic heart failure (CHF) is associated with progressive muscle atrophy and reduced local expression of insulin-like growth factor I (IGF-I). Design The present study was designed to test the hypothesis that the local deficiency of IGF-I in the skeletal muscle of patients with CHF would respond to a 6-months aerobic training intervention. Therefore, 18 patients [mean age 52.4 (SD 4.8) years, left ventricular ejection function (LVEF) 27 (SD 6)%] were prospectively randomized to either 6 months of training or sedentary lifestyle. Methods Serum levels of growth hormone (GH) were measured by immunofluorometric assay, IGF-I by competitive solid phase immunoassay. IGF-I expression was assessed in vastus lateralis biopsies by real-time PCR. Results Exercise training led to a significant increase in peak oxygen uptake by 26% [from 20.3 (SD 3.3) ml/kg per min to 25.5 (SD 5.7) ml/kg per min, P=0.003 versus control]. Local expression of IGF-I increased significantly after exercise training by 81% [from 6.3 (SE 0.8) to 11.4 (SE 1.4) relative units, P=0.007 versus control] while IGF-I receptor expression was reduced by 33% [from 20.0 (SE 2.1) to 13.8 (SE 1.7) relative units, P=0.008 versus control]. Serum growth hormone (GH) rose modestly from 0.12 (SE 0.07) to 0.65 (SE 0.37) ng/ml in the training group ( P=0.043 versus baseline), however, this change was not significant compared to the control group ( P=0.848). IGF-I serum levels remained virtually unchanged. Conclusions Exercise training improves local IGF-I expression without significant changes of systemic parameters of the GH/IGF-I axis. These findings indicate that exercise training has the therapeutic potential to attenuate peripheral skeletal muscle alterations in particular with respect to local IGF-I expression in patients with moderate CHF.


Sign in / Sign up

Export Citation Format

Share Document