βPS-Integrin acts downstream of Innexin 2 in modulating stretched cell morphogenesis in the Drosophila ovary
Abstract During oogenesis, a group of specialized follicle cells, known as stretched cells, flatten drastically from cuboidal to squamous shape. While morphogenesis of epithelia is critical for organogenesis, genes and signaling pathways involved in this process remain to be revealed. In addition to formation of gap junctions for intercellular exchange of small molecules, gap junction proteins form channels or act as adaptor proteins to regulate various cellular behaviors. In invertebrates, gap junction proteins are Innexins. Knockdown of Innexin 2 but not other Innexins expressed in follicle cells attenuates stretched cell morphogenesis. Interestingly, blocking of gap junctions with an inhibitor carbenoxolone does not affect stretched cell morphogenesis, suggesting that Innexin 2 might control stretched cell flattening in a gap-junction-independent manner. An excessive level of βPS-Integrin encoded by myospheroid is detected in Innexin 2 mutant cells specifically during stretched cell morphogenesis. Simultaneous knockdown of Innexin 2 and myospheroid partially rescues the morphogenetic defect resulted from Innexin 2 knockdown. Furthermore, reduction of βPS-Integrin is sufficient to induce early stretched cell flattening. Taken together, our data suggest that βPS-Integrin acts downstream of Innexin 2 in modulating stretched cell morphogenesis.