gap junction proteins
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 15)

H-INDEX

38
(FIVE YEARS 3)

Traffic ◽  
2022 ◽  
Author(s):  
Liying Guan ◽  
Yongzhi Yang ◽  
Jing Jing Liang ◽  
Yue Miao ◽  
Ang Yang Shang ◽  
...  

Author(s):  
Yi-Chia Huang ◽  
Kuan-Han Chen ◽  
Yu-Yang Chen ◽  
Liang-Hsuan Tsao ◽  
Tsung-Han Yeh ◽  
...  

Abstract During oogenesis, a group of specialized follicle cells, known as stretched cells, flatten drastically from cuboidal to squamous shape. While morphogenesis of epithelia is critical for organogenesis, genes and signaling pathways involved in this process remain to be revealed. In addition to formation of gap junctions for intercellular exchange of small molecules, gap junction proteins form channels or act as adaptor proteins to regulate various cellular behaviors. In invertebrates, gap junction proteins are Innexins. Knockdown of Innexin 2 but not other Innexins expressed in follicle cells attenuates stretched cell morphogenesis. Interestingly, blocking of gap junctions with an inhibitor carbenoxolone does not affect stretched cell morphogenesis, suggesting that Innexin 2 might control stretched cell flattening in a gap-junction-independent manner. An excessive level of βPS-Integrin encoded by myospheroid is detected in Innexin 2 mutant cells specifically during stretched cell morphogenesis. Simultaneous knockdown of Innexin 2 and myospheroid partially rescues the morphogenetic defect resulted from Innexin 2 knockdown. Furthermore, reduction of βPS-Integrin is sufficient to induce early stretched cell flattening. Taken together, our data suggest that βPS-Integrin acts downstream of Innexin 2 in modulating stretched cell morphogenesis.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nora G Peterson ◽  
Benjamin M Stormo ◽  
Kevin P Schoenfelder ◽  
Juliet S King ◽  
Rayson RS Lee ◽  
...  

Multiple nuclei sharing a common cytoplasm are found in diverse tissues, organisms, and diseases. Yet, multinucleation remains a poorly understood biological property. Cytoplasm sharing invariably involves plasma membrane breaches. In contrast, we discovered cytoplasm sharing without membrane breaching in highly resorptive Drosophila rectal papillae. During a six-hour developmental window, 100 individual papillar cells assemble a multinucleate cytoplasm, allowing passage of proteins of at least 62 kDa throughout papillar tissue. Papillar cytoplasm sharing does not employ canonical mechanisms such as incomplete cytokinesis or muscle fusion pore regulators. Instead, sharing requires gap junction proteins (normally associated with transport of molecules < 1 kDa), which are positioned by membrane remodeling GTPases. Our work reveals a new role for apical membrane remodeling in converting a multicellular epithelium into a giant multinucleate cytoplasm.


2020 ◽  
Author(s):  
Nora G. Peterson ◽  
Benjamin M. Stormo ◽  
Kevin P. Schoenfelder ◽  
Juliet S. King ◽  
Rayson R. S. Lee ◽  
...  

ABSTRACTMultiple nuclei sharing a common cytoplasm are found in diverse tissues, organisms, and diseases. Yet, multinucleation remains a poorly understood biological property. Cytoplasm sharing invariably involves plasma membrane breaches. In contrast, we discovered cytoplasm sharing without membrane breaching in highly resorptive Drosophila rectal papillae. During a six-hour developmental window, 100 individual papillar cells assemble a multinucleate cytoplasm, allowing passage of proteins of at least 27kDa throughout papillar tissue. Papillar cytoplasm sharing does not employ canonical mechanisms such as failed cytokinesis or muscle fusion pore regulators. Instead, sharing requires gap junction proteins (normally associated with transport of molecules <1kDa), which are positioned by membrane remodeling GTPases. Our work reveals a new role for apical membrane remodeling in converting a multicellular epithelium into a giant multinucleate cytoplasm.ONE SENTENCE SUMMARYApical membrane remodeling in a resorptive Drosophila epithelium generates a shared multinuclear cytoplasm.


2020 ◽  
Vol 118 (3) ◽  
pp. 274a
Author(s):  
Jaafar Hamdan ◽  
Adam DePriest ◽  
Ingrid M. Skerrett

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ina Lackner ◽  
Birte Weber ◽  
Shinjini Chakraborty ◽  
Sonja Braumüller ◽  
Markus Huber-Lang ◽  
...  

Sepsis is associated with global cardiac dysfunction and with high mortality rate. The development of septic cardiomyopathy is due to complex interactions of damage-associated molecular patters, cytokines, and complement activation products. The aim of this study was to define the effects of sepsis on cardiac structure, gap junction, and tight junction (TJ) proteins. Sepsis was induced by cecal ligation and puncture in male C57BL/6 mice. After a period of 24 h, the expression of cardiac structure, gap junction, and TJ proteins was determined. Murine HL-1 cells were stimulated with LPS, and mRNA expression of cardiac structure and gap junction proteins, intracellular reactive oxygen species, and troponin I release was analyzed. Furthermore, pyrogenic receptor subtype 7 (P2X7) expression and troponin I release of human cardiomyocytes (iPS) were determined after LPS exposure. In vivo, protein expression of connexin43 and α-actinin was decreased after the onset of polymicrobial sepsis, whereas in HL-1 cells, mRNA expression of connexin43, α-actinin, and desmin was increased in the presence of LPS. Expression of TJ proteins was not affected in vivo during sepsis. Although the presence of LPS and nigericin resulted in a significant troponin I release from HL-1 cells. Sepsis affected cardiac structure and gap junction proteins in mice, potentially contributing to compromised cardiac function.


Sign in / Sign up

Export Citation Format

Share Document