scholarly journals Opposing functions of the Hda1 complex and histone H2B mono-ubiquitylation in regulating cryptic transcription in Saccharomyces cerevisiae

Author(s):  
Margaret K Shirra ◽  
Rachel A Kocik ◽  
Mitchell A Ellison ◽  
Karen M Arndt

Abstract Maintenance of chromatin structure under the disruptive force of transcription requires cooperation among numerous regulatory factors. Histone post-translational modifications can regulate nucleosome stability and influence the disassembly and reassembly of nucleosomes during transcription elongation. The Paf1 transcription elongation complex, Paf1C, is required for several transcription-coupled histone modifications, including the mono-ubiquitylation of H2B. In Saccharomyces cerevisiae, amino acid substitutions in the Rtf1 subunit of Paf1C greatly diminish H2B ubiquitylation and cause transcription to initiate at a cryptic promoter within the coding region of the FLO8 gene, an indicator of chromatin disruption. In a genetic screen to identify factors that functionally interact with Paf1C, we identified mutations in HDA3, a gene encoding a subunit of the Hda1C histone deacetylase, as suppressors of an rtf1 mutation. Absence of Hda1C also suppresses the cryptic initiation phenotype of other mutants defective in H2B ubiquitylation. The genetic interactions between Hda1C and the H2B ubiquitylation pathway appear specific: loss of Hda1C does not suppress the cryptic initiation phenotypes of other chromatin mutants and absence of other histone deacetylases does not suppress the absence of H2B ubiquitylation. Providing further support for an appropriate balance of histone acetylation in regulating cryptic initiation, absence of the Sas3 histone acetyltransferase elevates cryptic initiation in rtf1 mutants. Our data suggest that the H2B ubiquitylation pathway and Hda1C coordinately regulate chromatin structure during transcription elongation and point to a potential role for a histone deacetylase in supporting chromatin accessibility.

2020 ◽  
Author(s):  
Margaret K. Shirra ◽  
Rachel A. Kocik ◽  
Mitchell A. Ellison ◽  
Karen M. Arndt

ABSTRACTMaintenance of chromatin structure under the disruptive force of transcription requires cooperation among numerous chromatin regulatory factors. Histone post-translational modifications can regulate nucleosome stability and influence the disassembly and reassembly of nucleosomes during transcription elongation. The Paf1 transcription elongation complex, Paf1C, is required for several transcription-coupled histone modifications, including the mono-ubiquitylation of H2B. In Saccharomyces cerevisiae, amino acid substitutions in the Rtf1 subunit of Paf1C greatly diminish H2B ubiquitylation and cause transcription to initiate at a cryptic promoter within a coding gene, an indicator of chromatin disruption. In a genetic screen to identify factors that functionally interact with Paf1C, we identified a mutation in HDA3, a gene encoding a subunit of the Hda1C histone deacetylase, as a suppressor of an rtf1 mutation. Absence of Hda1C also suppresses the cryptic initiation phenotype of other mutants defective in H2B ubiquitylation. The genetic interactions between Hda1C and the H2B ubiquitylation pathway appear specific: loss of Hda1C does not suppress the cryptic initiation phenotypes of other chromatin mutants and absence of other histone deacetylases does not suppress the absence of H2B ubiquitylation. Providing further support for an appropriate balance of histone acetylation in regulating cryptic initiation, we find that deletion of the Sas3 histone acetyltransferase elevates cryptic initiation in rtf1 mutants. Our data suggest a coordination between two epigenetic modifiers, the H2B ubiquitylation pathway and Hda1C, in regulating chromatin structure during transcription elongation and reveal an unexpected role for a histone deacetylase in supporting chromatin accessibility.


2008 ◽  
Vol 28 (7) ◽  
pp. 2113-2124 ◽  
Author(s):  
Brian C. Del Rosario ◽  
Lucy F. Pemberton

ABSTRACT Chromatin remodeling is central to the regulation of transcription elongation. We demonstrate that the conserved Saccharomyces cerevisiae histone chaperone Nap1 associates with chromatin. We show that Nap1 regulates transcription of PHO5, and the increase in transcript level and the higher phosphatase activity plateau observed for Δnap1 cells suggest that the net function of Nap1 is to facilitate nucleosome reassembly during transcription elongation. To further our understanding of histone chaperones in transcription elongation, we identified factors that regulate the function of Nap1 in this process. One factor investigated is an essential mRNA export and TREX complex component, Yra1. Nap1 interacts directly with Yra1 and genetically with other TREX complex components and the mRNA export factor Mex67. Additionally, we show that the recruitment of Nap1 to the coding region of actively transcribed genes is Yra1 dependent and that its recruitment to promoters is TREX complex independent. These observations suggest that Nap1 functions provide a new connection between transcription elongation, chromatin assembly, and messenger RNP complex biogenesis.


1991 ◽  
Vol 11 (2) ◽  
pp. 721-730 ◽  
Author(s):  
J Y Lee ◽  
C E Rohlman ◽  
L A Molony ◽  
D R Engelke

RNA components have been identified in preparations of RNase P from a number of eucaryotic sources, but final proof that these RNAs are true RNase P subunits has been elusive because the eucaryotic RNAs, unlike the procaryotic RNase P ribozymes, have not been shown to have catalytic activity in the absence of protein. We previously identified such an RNA component in Saccharomyces cerevisiae nuclear RNase P preparations and have now characterized the corresponding, chromosomal gene, called RPR1 (RNase P ribonucleoprotein 1). Gene disruption experiments showed RPR1 to be single copy and essential. Characterization of the gene region located RPR1 600 bp downstream of the URA3 coding region on chromosome V. We have sequenced 400 bp upstream and 550 bp downstream of the region encoding the major 369-nucleotide RPR1 RNA. The presence of less abundant, potential precursor RNAs with an extra 84 nucleotides of 5' leader and up to 30 nucleotides of 3' trailing sequences suggests that the primary RPR1 transcript is subjected to multiple processing steps to obtain the 369-nucleotide form. Complementation of RPR1-disrupted haploids with one variant of RPR1 gave a slow-growth and temperature-sensitive phenotype. This strain accumulates tRNA precursors that lack the 5' end maturation performed by RNase P, providing direct evidence that RPR1 RNA is an essential component of this enzyme.


1990 ◽  
Vol 10 (12) ◽  
pp. 6500-6511 ◽  
Author(s):  
F E Williams ◽  
R J Trumbly

The TUP1 and CYC8 (= SSN6) genes of Saccharomyces cerevisiae play a major role in glucose repression. Mutations in either TUP1 or CYC8 eliminate or reduce glucose repression of many repressible genes and induce other phenotypes, including flocculence, failure to sporulate, and sterility of MAT alpha cells. The TUP1 gene was isolated in a screen for genes that regulate mating type (V.L. MacKay, Methods Enzymol. 101:325-343, 1983). We found that a 3.5-kb restriction fragment was sufficient for complete complementation of tup1-100. The gene was further localized by insertional mutagenesis and RNA mapping. Sequence analysis of 2.9 kb of DNA including TUP1 revealed only one long open reading frame which predicts a protein of molecular weight 78,221. The predicted protein is rich in serine, threonine, and glutamine. In the carboxyl region there are six repeats of a pattern of about 43 amino acids. This same pattern of conserved residues is seen in the beta subunit of transducin and the yeast CDC4 gene product. Insertion and deletion mutants are viable, with the same range of phenotypes as for point mutants. Deletions of the 3' end of the coding region produced the same mutant phenotypes as did total deletions, suggesting that the C terminus is critical for TUP1 function. Strains with deletions in both the CYC8 and TUP1 genes are viable, with phenotypes similar to those of strains with a single deletion. A deletion mutation of TUP1 was able to suppress the snf1 mutation block on expression of the SUC2 gene encoding invertase.


2006 ◽  
Vol 26 (4) ◽  
pp. 1496-1509 ◽  
Author(s):  
Amine Nourani ◽  
Francois Robert ◽  
Fred Winston

ABSTRACT Spt2/Sin1 is a DNA binding protein with HMG-like domains that has been suggested to play a role in chromatin-mediated transcription in Saccharomyces cerevisiae. Previous studies have suggested models in which Spt2 plays an inhibitory role in the initiation of transcription of certain genes. In this work, we have taken several approaches to study Spt2 in greater detail. Our results have identified previously unknown genetic interactions between spt2Δ and mutations in genes encoding transcription elongation factors, including members of the PAF and HIR/HPC complexes. In addition, genome-wide and gene-specific chromatin immunoprecipitation analyses suggest that Spt2 is primarily associated with coding regions in a transcription-dependent fashion. Furthermore, our results show that Spt2, like other elongation factors, is required for the repression of transcription from a cryptic promoter within a coding region and that Spt2 is also required for repression of recombination within transcribed regions. Finally, we provide evidence that Spt2 plays a role in regulating the levels of histone H3 over transcribed regions. Taken together, our results suggest a direct link for Spt2 with transcription elongation, chromatin dynamics, and genome stability.


2005 ◽  
Vol 25 (2) ◽  
pp. 637-651 ◽  
Author(s):  
Tiaojiang Xiao ◽  
Cheng-Fu Kao ◽  
Nevan J. Krogan ◽  
Zu-Wen Sun ◽  
Jack F. Greenblatt ◽  
...  

ABSTRACT Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an association of Rad6 with the hyperphosphorylated (elongating) form of RNA polymerase II (Pol II). This association appears to be necessary for the transcriptional activities of Rad6, as deletion of various Paf1 complex members or Bre1 abolishes H2B ubiquitylation (ubH2B) and reduces the recruitment of Rad6 to the promoters and transcribed regions of active genes. Using the inducible GAL1 gene as a model, we find that the recruitment of Rad6 upon activation occurs rapidly and transiently across the gene and coincides precisely with the appearance of Pol II. Significantly, during GAL1 activation in an rtf1 deletion mutant, Rad6 accumulates at the promoter but is absent from the transcribed region. This fact suggests that Rad6 is recruited to promoters independently of the Paf1 complex but then requires this complex for entrance into the coding region of genes in a Pol II-associated manner. In support of a role for Rad6-dependent H2B ubiquitylation in transcription elongation, we find that ubH2B levels are dramatically reduced in strains bearing mutations of the Pol II C-terminal domain (CTD) and abolished by inactivation of Kin28, the serine 5 CTD kinase that promotes the transition from initiation to elongation. Furthermore, synthetic genetic array analysis reveals that the Rad6 complex interacts genetically with a number of known or suspected transcription elongation factors. Finally, we show that Saccharomyces cerevisiae mutants bearing defects in the pathway to H2B ubiquitylation display transcription elongation defects as assayed by 6-azauracil sensitivity. Collectively, our results indicate a role for Rad6 and H2B ubiquitylation during the elongation cycle of transcription and suggest a mechanism by which H3 methylation may be regulated.


2004 ◽  
Vol 24 (6) ◽  
pp. 2364-2372 ◽  
Author(s):  
Michiel Vermeulen ◽  
Michael J. Carrozza ◽  
Edwin Lasonder ◽  
Jerry L. Workman ◽  
Colin Logie ◽  
...  

ABSTRACT The histone code is among others established via differential acetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). To unambiguously determine the histone tail specificity of HDAC-containing complexes, we have established an in vitro system consisting of nucleosomal templates reconstituted with hyperacetylated histones or recombinant histones followed by acetylation with native SAGA or NuA4. Selective targeting of the mammalian Sin3/HDAC and N-CoR/SMRT corepressor complexes by using specific chimeric repressors created a near physiological setting to assess their histone tail specificity. Recruitment of the Sin3/HDAC complex to nucleosomal templates preacetylated with SAGA or NuA4 resulted in deacetylation of histones H3 and H4, whereas recruitment of N-CoR/SMRT resulted in deacetylation of histone H3 only. These results provide solid evidence that HDAC-containing complexes display distinct, intrinsic histone tail specificities and hence may function differently to regulate chromatin structure and transcription.


Author(s):  
Kelly A. Hyndman ◽  
David K Crossman

Recent studies have identified at least 20 different kidney cell types based upon chromatin structure and gene expression. Histone deacetylases (HDACs) are epigenetic transcriptional repressors via deacetylation of histone lysines resulting in inaccessible chromatin. We reported that kidney epithelial HDAC1 and HDAC2 activity is critical for maintaining a healthy kidney and preventing fluid-electrolyte abnormalities. However, to what extent does Hdac1/Hdac2 knockdown affect chromatin structure and subsequent transcript expression in the kidney? To answer this question, we used single nucleus Assay for Transposase-Accessible Chromatin-sequencing (snATAC-seq) and snRNA-seq to profile kidney nuclei from male and female, control and littermate kidney epithelial Hdac1/Hdac2 knockdown mice. Hdac1/Hdac2 knockdown resulted in significant changes in the chromatin structure predominantly within the promoter region of gene loci involved in fluid-electrolyte balance such as the aquaporins, with both increased and decreased accessibility captured. Moreover, Hdac1/Hdac2 knockdown resulted different gene loci being accessible with a corresponding increased transcript number in the kidney, but among all mice only 24-30% of chromatin accessibility agreed with transcript expression (e.g. open chromatin, increased transcript). To conclude, although chromatin structure does affect transcription, ~70% of the differentially expressed genes cannot be explained by changes in chromatin accessibility and HDAC1/HDAC2 had a minimal effect on these global patterns. Yet, the genes that are targets of HDAC1 and HDAC2 are critically important for maintaining kidney function.


1991 ◽  
Vol 11 (2) ◽  
pp. 721-730 ◽  
Author(s):  
J Y Lee ◽  
C E Rohlman ◽  
L A Molony ◽  
D R Engelke

RNA components have been identified in preparations of RNase P from a number of eucaryotic sources, but final proof that these RNAs are true RNase P subunits has been elusive because the eucaryotic RNAs, unlike the procaryotic RNase P ribozymes, have not been shown to have catalytic activity in the absence of protein. We previously identified such an RNA component in Saccharomyces cerevisiae nuclear RNase P preparations and have now characterized the corresponding, chromosomal gene, called RPR1 (RNase P ribonucleoprotein 1). Gene disruption experiments showed RPR1 to be single copy and essential. Characterization of the gene region located RPR1 600 bp downstream of the URA3 coding region on chromosome V. We have sequenced 400 bp upstream and 550 bp downstream of the region encoding the major 369-nucleotide RPR1 RNA. The presence of less abundant, potential precursor RNAs with an extra 84 nucleotides of 5' leader and up to 30 nucleotides of 3' trailing sequences suggests that the primary RPR1 transcript is subjected to multiple processing steps to obtain the 369-nucleotide form. Complementation of RPR1-disrupted haploids with one variant of RPR1 gave a slow-growth and temperature-sensitive phenotype. This strain accumulates tRNA precursors that lack the 5' end maturation performed by RNase P, providing direct evidence that RPR1 RNA is an essential component of this enzyme.


Sign in / Sign up

Export Citation Format

Share Document