scholarly journals A B73 x Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize

Author(s):  
Sergio Perez-Limón ◽  
Meng Li ◽  
G Carolina Cintora-Martinez ◽  
M Rocio Aguilar-Rangel ◽  
M Nancy Salazar-Vidal ◽  
...  

Abstract Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.

2021 ◽  
Author(s):  
Sergio Perez-Limon ◽  
Meng Li ◽  
G. Carolina Cintora-Martinez ◽  
M. Rocio Aguilar-Rangel ◽  
M. Nancy Salazar-Vidal ◽  
...  

Generations of farmer selection have produced a unique collection of traditional maize varieties adapted to the environmental challenges of the central Mexican highlands. In addition to agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterized a recombinant inbred line population derived from the cross of the B73 reference line and the Mexican highland maize variety Palomero Toluqueo. Evaluation over multiple years in lowland and highland field sites in Mexico identified genomic regions linked to yield components and putatively adaptive morphological traits. A region on chromosome 7 associated with ear weight showed antagonistic allelic effects in lowland and highland fields, suggesting a trade-off consistent with local adaptation. We identified several alleles of highland origin associated with characteristic highland traits, including reduced tassel branching, increased stem pigmentation and the presence of stem macrohairs. The oligogenic architecture of characteristic morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.


2021 ◽  
Author(s):  
Jakob M. Goldmann ◽  
Vladimir B. Seplyarskiy ◽  
Wendy S. W. Wong ◽  
Thierry Vilboux ◽  
Pieter B. Neerincx ◽  
...  

2017 ◽  
Author(s):  
Jakob M. Goldmann ◽  
Vladimir B. Seplyarskiy ◽  
Wendy S.W. Wong ◽  
Thierry Vilboux ◽  
Dale L. Bodian ◽  
...  

Clustering of mutations has been found both in somatic mutations from cancer genomes and in germline de novo mutations (DNMs). We identified 1,755 clustered DNMs (cDNMs) within whole-genome sequencing data from 1,291 parent-offspring trios and investigated the underlying mutational mechanisms. We found that the number of clusters on the maternalallele was positively correlated with maternal age and that these consist of more individual mutations with larger intra-mutational distances compared to paternal clusters. More than 50% of maternal clusters were located on chromosomes 8, 9 and 16, in regions with an overall increased maternal mutation rate. Maternal clusters in these regions showed a distinct mutation signature characterized by C>G mutations. Finally, we found that maternal clusters associate with processes involving double-stranded-breaks (DSBs) such as meiotic gene conversions and de novo deletions events. These findings suggest accumulation of DSB-induced mutations throughout oocyte aging as an underlying mechanism leading to maternal mutation clusters.


2018 ◽  
Vol 73 (9) ◽  
pp. 531-532
Author(s):  
Jakob M. Goldmann ◽  
Vladimir B. Seplyarskiy ◽  
Wendy S. W. Wong ◽  
Thierry Vilboux ◽  
Pieter B. Neerincx ◽  
...  

2018 ◽  
Vol 50 (4) ◽  
pp. 487-492 ◽  
Author(s):  
Jakob M. Goldmann ◽  
Vladimir B. Seplyarskiy ◽  
Wendy S. W. Wong ◽  
Thierry Vilboux ◽  
Pieter B. Neerincx ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


2021 ◽  
Vol 48 (3) ◽  
pp. 2775-2789
Author(s):  
Ludwig Stenz

AbstractThe 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.


Sign in / Sign up

Export Citation Format

Share Document