Mutational analysis of the GAL4-encoded transcriptional activator protein of Saccharomyces cerevisiae.

Genetics ◽  
1988 ◽  
Vol 120 (1) ◽  
pp. 63-74
Author(s):  
M Johnston ◽  
J Dover

Abstract The GAL4 protein of Saccharomyces cerevisiae binds to DNA upstream of each of six genes and stimulates their transcription. To locate regions of the protein responsible for these processes, we identified and characterized 88 gal4 mutations selected in vivo to reduce the ability to GAL4 protein to activate transcription. These mutations alter two regions of GAL4 protein: the DNA binding domain, and the transcription activation domain. Some mutations in the DNA binding domain that abolish the ability of GAL4 protein to bind to DNA in vitro change amino acid residues proposed to form a zinc finger, confirming that this structure is indeed involved in DNA binding. Four different amino acid changes in the zinc finger appear to reduce (but not abolish) the affinity of GAL4 protein for zinc ions, thereby identifying some of the amino acids involved in forming the zinc-binding structure. Several other mutations that abolish the DNA binding activity of the protein alter the 20 amino acids adjacent to the zinc finger, suggesting that these residues are part of the DNA binding domain. Two amino acid changes in the region adjacent to the zinc finger also appear to affect the ability of GAL4 protein to bind zinc ions, suggesting that this region of the protein can influence the structure of the zinc binding domain. The transcription activation domain of GAL4 protein is remarkably resistant to single amino acid changes: only 4 of the 42 mutations that alter this region of the protein are of the missense type. This observation is consistent with other lines of evidence that GAL4 protein possesses multiple transcription activation domains with unusual sequence flexibility.

Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 101-115 ◽  
Author(s):  
David T Kirkpatrick ◽  
Qingqing Fan ◽  
Thomas D Petes

Abstract The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, α (transcription factor dependent) and β (transcription factor independent).


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1998 ◽  
Vol 18 (7) ◽  
pp. 4197-4208 ◽  
Author(s):  
Kannan Thirunavukkarasu ◽  
Muktar Mahajan ◽  
Keith W. McLarren ◽  
Stefano Stifani ◽  
Gerard Karsenty

ABSTRACT Osf2/Cbfa1, hereafter called Osf2, is a member of the Runt-related family of transcription factors that plays a critical role during osteoblast differentiation. Like all Runt-related proteins, it contains a runt domain, which is the DNA-binding domain, and a C-terminal proline-serine-threonine-rich (PST) domain thought to be the transcription activation domain. Additionally, Osf2 has two amino-terminal domains distinct from any other Runt-related protein. To understand the mechanisms of osteoblast gene regulation by Osf2, we performed an extensive structure-function analysis. After defining a short Myc-related nuclear localization signal, a deletion analysis revealed the existence of three transcription activation domains and one repression domain. AD1 (for activation domain 1) comprises the first 19 amino acids of the molecule, which form the first domain unique to Osf2, AD2 is formed by the glutamine-alanine (QA) domain, the second domain unique to Osf2, and AD3 is located in the N-terminal half of the PST domain and also contains sequences unique to Osf2. The transcription repression domain comprises the C-terminal 154 amino acids of Osf2. DNA-binding, domain-swapping, and protein interaction experiments demonstrated that full-length Osf2 does not interact with Cbfβ, a known partner of Runt-related proteins, whereas a deletion mutant of Osf2 containing only the runt and PST domains does. The QA domain appears to be responsible for preventing this heterodimerization. Thus, our results uncover the unique functional organization of Osf2 by identifying functional domains not shared with other Runt-related proteins that largely control its transactivation and heterodimerization abilities.


1988 ◽  
Vol 8 (9) ◽  
pp. 3726-3733
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought.


1992 ◽  
Vol 12 (1) ◽  
pp. 266-275 ◽  
Author(s):  
J J Schwarz ◽  
T Chakraborty ◽  
J Martin ◽  
J M Zhou ◽  
E N Olson

Myogenin is a skeletal muscle-specific transcription factor that can activate myogenesis when introduced into a variety of nonmuscle cell types. Activation of the myogenic program by myogenin is dependent on its binding to a DNA sequence known as an E box, which is associated with numerous muscle-specific genes. Myogenin shares homology with MyoD and other myogenic regulatory factors within a basic region and a helix-loop-helix (HLH) motif that mediate DNA binding and dimerization, respectively. Here we show that the basic region-HLH motif of myogenin alone lacks transcriptional activity and is dependent on domains in the amino and carboxyl termini to activate transcription. Analysis of these N- and C-terminal domains through creation of chimeras with the DNA-binding domain of the Saccharomyces cerevisiae transcription factor GAL4 revealed that they act as strong transcriptional activators. These transcription activation domains are dependent for activity on a specific amino acid sequence within the basic region, referred to as the myogenic recognition motif (MRM), when an E box is the target for DNA binding. However, the activation domains function independent of the MRM when DNA binding is mediated through a heterologous DNA-binding domain. The activation domain of the acidic coactivator VP16 can substitute for the myogenin activation domains and restore strong myogenic activity to the basic region-HLH motif. Within a myogenin-VP16 chimera, however, the VP16 activation domain also relies on the MRM for activation of the myogenic program. These findings reveal that DNA binding and transcriptional activation are separable functions, encoded by different domains of myogenin, but that the activity of the transcriptional activation domains is influenced by the DNA-binding domain. Activation of muscle-specific transcription requires collaboration between the DNA-binding and activation domains of myogenin and is dependent on events in addition to DNA binding.


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1992 ◽  
Vol 12 (1) ◽  
pp. 266-275
Author(s):  
J J Schwarz ◽  
T Chakraborty ◽  
J Martin ◽  
J M Zhou ◽  
E N Olson

Myogenin is a skeletal muscle-specific transcription factor that can activate myogenesis when introduced into a variety of nonmuscle cell types. Activation of the myogenic program by myogenin is dependent on its binding to a DNA sequence known as an E box, which is associated with numerous muscle-specific genes. Myogenin shares homology with MyoD and other myogenic regulatory factors within a basic region and a helix-loop-helix (HLH) motif that mediate DNA binding and dimerization, respectively. Here we show that the basic region-HLH motif of myogenin alone lacks transcriptional activity and is dependent on domains in the amino and carboxyl termini to activate transcription. Analysis of these N- and C-terminal domains through creation of chimeras with the DNA-binding domain of the Saccharomyces cerevisiae transcription factor GAL4 revealed that they act as strong transcriptional activators. These transcription activation domains are dependent for activity on a specific amino acid sequence within the basic region, referred to as the myogenic recognition motif (MRM), when an E box is the target for DNA binding. However, the activation domains function independent of the MRM when DNA binding is mediated through a heterologous DNA-binding domain. The activation domain of the acidic coactivator VP16 can substitute for the myogenin activation domains and restore strong myogenic activity to the basic region-HLH motif. Within a myogenin-VP16 chimera, however, the VP16 activation domain also relies on the MRM for activation of the myogenic program. These findings reveal that DNA binding and transcriptional activation are separable functions, encoded by different domains of myogenin, but that the activity of the transcriptional activation domains is influenced by the DNA-binding domain. Activation of muscle-specific transcription requires collaboration between the DNA-binding and activation domains of myogenin and is dependent on events in addition to DNA binding.


1988 ◽  
Vol 8 (9) ◽  
pp. 3726-3733 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


Sign in / Sign up

Export Citation Format

Share Document