scholarly journals A novel mutation in DNA topoisomerase I of yeast causes DNA damage and RAD9-dependent cell cycle arrest.

Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 799-814 ◽  
Author(s):  
N A Levin ◽  
M A Bjornsti ◽  
G R Fink

Abstract DNA topoisomerases, enzymes that alter the superhelicity of DNA, have been implicated in such critical cellular functions as transcription, DNA replication, and recombination. In the yeast Saccharomyces cerevisiae, a null mutation in the gene encoding topoisomerase I (TOP1) causes elevated levels of mitotic recombination in the ribosomal DNA (rDNA), but has little effect on growth. We have isolated a missense mutation in TOP1 that causes mitotic hyper-recombination not only in the rDNA, but also at other loci, in addition to causing a number of other unexpected phenotypes. This topoisomerase I mutation (top1-103) causes slow growth, constitutive expression of DNA damage-inducible genes, and inviability in the absence of the double-strand break repair system. Overexpression of top1-103 causes RAD9-dependent cell cycle arrest in G2. We show that the Top1-103 enzyme nicks DNA in vitro, suggesting that it damages DNA directly. We propose that Top1-103 mimics the action of wild-type topoisomerase I in the presence of the anti-tumor drug, camptothecin.

Oncogene ◽  
2004 ◽  
Vol 23 (23) ◽  
pp. 4173-4176 ◽  
Author(s):  
Senthil K Radhakrishnan ◽  
Claudine S Feliciano ◽  
Feridoon Najmabadi ◽  
Andrea Haegebarth ◽  
Eugene S Kandel ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. 89-89
Author(s):  
Jiaqi Liu ◽  
Guohe Geng ◽  
Guang Liang ◽  
Ling Wang ◽  
Kuntian Luo ◽  
...  

2015 ◽  
Author(s):  
Yulong Li () ◽  
Robin L. Armstrong ◽  
Robert J. Duronio ◽  
David M. MacAlpine

ABSTRACTThe methylation state of lysine 20 on histone H4 (H4K20) has been linked to chromatin compaction, transcription, DNA repair and DNA replication. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7. PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which has been partially attributed to defects in origin selection and activation. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 and H4K20 methylation impact the replication program on a genomic scale. We employed genetic, cytological, and genomic approaches to better understand the role of PR-Set7 and H4K20 methylation in regulating DNA replication and genome stability in Drosophila cells. We find that deregulation of H4K20 methylation had no impact on origin activation throughout the genome. Instead, depletion of PR-Set7 and loss of H4K20me1 results in the accumulation of DNA damage and an ATR-dependent cell cycle arrest. Coincident with the ATR-dependent cell cycle arrest, we find increased DNA damage that is specifically limited to late replicating regions of the Drosophila genome, suggesting that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1453
Author(s):  
Haoran Wang ◽  
Jianhua Wei ◽  
Hong Jiang ◽  
Ye Zhang ◽  
Caina Jiang ◽  
...  

The use of cisplatin is severely limited by its toxic side-effects, which has spurred chemists to employ different strategies in the development of new metal-based anticancer agents. Here, three novel dehydroabietyl piperazine dithiocarbamate ruthenium (II) polypyridyl complexes (6a–6c) were synthesized as antitumor agents. Compounds 6a and 6c exhibited better in vitro antiproliferative activity against seven tumor cell lines than cisplatin, they displayed no evident resistance in the cisplatin-resistant cell line A549/DPP. Importantly, 6a effectively inhibited tumor growth in the T-24 xenograft mouse model in comparison with cisplatin. Gel electrophoresis assay indicated that DNA was the potential targets of 6a and 6c, and the upregulation of p-H2AX confirmed this result. Cell cycle arrest studies demonstrated that 6a and 6c arrested the cell cycle at G1 phase, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of cyclin E. In addition, 6a and 6c caused the apoptosis of tumor cells along with the upregulation of the expression of Bax, caspase-9, cytochrome c, intracellular Ca2+ release, reactive oxygen species (ROS) generation and the downregulation of Bcl-2. These mechanistic study results suggested that 6a and 6c exerted their antitumor activity by inducing DNA damage, and consequently causing G1 stage arrest and the induction of apoptosis.


2002 ◽  
Vol 277 (23) ◽  
pp. 21110 ◽  
Author(s):  
Damu Tang ◽  
Dongcheng Wu ◽  
Atsushi Hirao ◽  
Jill M. Lahti ◽  
Lieqi Liu ◽  
...  

2021 ◽  
Vol 32 ◽  
pp. S346
Author(s):  
Md Mohiuddin ◽  
Hideharu Kimura ◽  
Takashi Sone ◽  
Hiroki Matsuoka ◽  
Keigo Saeki ◽  
...  

Molecules ◽  
2012 ◽  
Vol 17 (6) ◽  
pp. 7241-7254 ◽  
Author(s):  
Jing-Iong Yang ◽  
Chi-Chen Yeh ◽  
Jin-Ching Lee ◽  
Szu-Cheng Yi ◽  
Hurng-Wern Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document