scholarly journals RNA folding in Drosophila shows a distance effect for compensatory fitness interactions.

Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 97-103
Author(s):  
W Stephan ◽  
D A Kirby

Abstract Phylogenetic-comparative analysis was used to construct a secondary structure of Adh precursor messenger RNA (pre-mRNA) in Drosophila. The analysis revealed that the rate of coevolution of base-pairing residues decreases with their physical distance. This result is in qualitative agreement with a model of compensatory fitness interactions which assumes that mutations are individually deleterious but become harmless (neutral) in appropriate combinations. This model predicts that coupled mutations can become fixed in a population under mutation pressure and random genetic drift, when the mutations are closely linked. However, the rate of joint fixation drops as distance between sites increases and recombination breaks up favorable combinations. RNA secondary structure was also used to interpret patterns of linkage disequilibrium at Adh.

2020 ◽  
Vol 36 (9) ◽  
pp. 2920-2922
Author(s):  
Matan Drory Retwitzer ◽  
Vladimir Reinharz ◽  
Alexander Churkin ◽  
Yann Ponty ◽  
Jérôme Waldispühl ◽  
...  

Abstract Summary RNA design has conceptually evolved from the inverse RNA folding problem. In the classical inverse RNA problem, the user inputs an RNA secondary structure and receives an output RNA sequence that folds into it. Although modern RNA design methods are based on the same principle, a finer control over the resulting sequences is sought. As an important example, a substantial number of non-coding RNA families show high preservation in specific regions, while being more flexible in others and this information should be utilized in the design. By using the additional information, RNA design tools can help solve problems of practical interest in the growing fields of synthetic biology and nanotechnology. incaRNAfbinv 2.0 utilizes a fragment-based approach, enabling a control of specific RNA secondary structure motifs. The new version allows significantly more control over the general RNA shape, and also allows to express specific restrictions over each motif separately, in addition to other advanced features. Availability and implementation incaRNAfbinv 2.0 is available through a standalone package and a web-server at https://www.cs.bgu.ac.il/incaRNAfbinv. Source code, command-line and GUI wrappers can be found at https://github.com/matandro/RNAsfbinv. Supplementary information Supplementary data are available at Bioinformatics online.


1977 ◽  
Vol 68 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Gunnar Von Heijne ◽  
Lennart Nilsson ◽  
Clas Blomberg

Author(s):  
Yuanning Liu ◽  
Qi Zhao ◽  
Hao Zhang ◽  
Rui Xu ◽  
Yang Li ◽  
...  

1984 ◽  
Vol 12 (9) ◽  
pp. 3937-3950 ◽  
Author(s):  
Clive R. Wood ◽  
Michael A. Boss ◽  
Thakor P. Patel ◽  
J.Spencer Emtage

2018 ◽  
Author(s):  
Osama Alaidi ◽  
Fareed Aboul-ela

ABSTRACTThe realization that non protein-coding RNA (ncRNA) is implicated in an increasing number of cellular processes, many related to human disease, makes it imperative to understand and predict RNA folding. RNA secondary structure prediction is more tractable than tertiary structure or protein structure. Yet insights into RNA structure-function relationships are complicated by coupling between RNA folding and ligand binding. Here, we introduce a simple statistical mechanical formalism to calculate perturbations to equilibrium secondary structure conformational distributions for RNA, in the presence of bound cognate ligands. For the first time, this formalism incorporates a key factor in coupling ligand binding to RNA conformation: the differential affinity of the ligand for a range of RNA-folding intermediates. We apply the approach to the SAM-I riboswitch, for which binding data is available for analogs of intermediate secondary structure conformers. Calculations of equilibrium secondary structure distributions during the transcriptional “decision window” predict subtle shifts due to the ligand, rather than an on/off switch. The results suggest how ligand perturbation can release a kinetic block to the formation of a terminator hairpin in the full-length riboswitch. Such predictions identify aspects of folding that are most affected by ligand binding, and can readily be compared with experiment.


2000 ◽  
Vol 33 (3) ◽  
pp. 199-253 ◽  
Author(s):  
Paul G. Higgs

1. Background to RNA structure 2001.1 Types of RNA 2001.1.1 Transfer RNA (tRNA) 2001.1.2 Messenger RNA (mRNA) 2011.1.3 Ribosomal RNA (rRNA) 2011.1.4 Other ribonucleoprotein particles 2021.1.5 Viruses and viroids 2021.1.6 Ribozymes 2021.2 Elements of RNA secondary structure 2031.3 Secondary structure versus tertiary structure 2052. Theoretical and computational methods for RNA secondary structure determination 2082.1 Dynamic programming algorithms 2082.2 Kinetic folding algorithms 2102.3 Genetic algorithms 2122.4 Comparative methods 2133. RNA thermodynamics and folding mechanisms 2163.1 The reliability of minimum free energy structure prediction 2163.2 The relevance of RNA folding kinetics 2183.3 Examples of RNA folding kinetics simulations 2213.4 RNA as a disordered system 2274. Aspects of RNA evolution 2334.1 The relevance of RNA for studies of molecular evolution 2334.1.1 Molecular phylogenetics 2344.1.2 tRNAs and the genetic code 2344.1.3 Viruses and quasispecies 2354.1.4 Fitness landscapes 2354.2 The interaction between thermodynamics and sequence evolution 2364.3 Theory of compensatory substitutions in RNA helices 2384.4 Rates of compensatory substitutions obtained from sequence analysis 2405. Conclusions 2466. Acknowledgements 2467. References 246This article takes an inter-disciplinary approach to the study of RNA secondary structure, linking together aspects of structural biology, thermodynamics and statistical physics, bioinformatics, and molecular evolution. Since the intended audience for this review is diverse, this section gives a brief elementary level discussion of the chemistry and structure of RNA, and a rapid overview of the many types of RNA molecule known. It is intended primarily for those not already familiar with molecular biology and biochemistry.Ribonucleic acid consists of a linear polymer with a backbone of ribose sugar rings linked by phosphate groups. Each sugar has one of the four ‘bases’ adenine, cytosine, guanine and uracil (A, C, G, and U) linked to it as a side group. The structure and function of an RNA molecule is specific to the sequence of bases. The phosphate groups link the 5′ carbon of one ribose to the 3′ carbon of the next. This imposes a directionality on the backbone. The two ends are referred to as 5′ and 3′ ends, since one end has an unlinked 5′ carbon and one has an unlinked 3′ carbon. The chemical differences between RNA and DNA (deoxyribonucleic acid) are fairly small: one of the OH groups in ribose is replaced by an H in deoxyribose, and DNA contains thymine (T) bases instead of U. However, RNA structure is very different from DNA structure. In the familiar double helical structure of DNA the two strands are perfectly complementary in sequence. RNA usually occurs as single strands, and base pairs are formed intra-molecularly, leading to a complex arrangement of short helices which is the basis of the secondary structure. Some RNA molecules have well-defined tertiary structures. In this sense, RNA structures are more akin to globular protein structures than to DNA.The role of proteins as biochemical catalysts and the role of DNA in storage of genetic information have long been recognised. RNA has sometimes been considered as merely an intermediary between DNA and proteins. However, an increasing number of functions of RNA are now becoming apparent, and RNA is coming to be seen as an important and versatile molecule in its own right.


Sign in / Sign up

Export Citation Format

Share Document