scholarly journals Inactivation of the Neurospora crassa gene encoding the mitochondrial protein import receptor MOM19 by the technique of "sheltered RIP".

Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 107-118 ◽  
Author(s):  
T A Harkness ◽  
R L Metzenberg ◽  
H Schneider ◽  
R Lill ◽  
W Neupert ◽  
...  

Abstract We have used a technique referred to as "sheltered RIP" (repeat induced point mutation) to create mutants of the mom-19 gene of Neurospora crassa, which encodes an import receptor for nuclear encoded mitochondrial precursor proteins. Sheltered RIP permits the isolation of a mutant gene in one nucleus, even if that gene is essential for the survival of the organism, by sheltering the nucleus carrying the mutant gene in a heterokaryon with an unaffected nucleus. Furthermore, the nucleus harboring the RIPed gene contains a selectable marker so that it is possible to shift nuclear ratios in the heterokaryons to a state in which the nucleus containing the RIPed gene predominates in cultures grown under selective conditions. This results in a condition where the target gene product should be present at very suboptimal levels and allows the study of the mutant phenotype. One allele of mom-19 generated by this method contains 44 transitions resulting in 18 amino acid substitutions. When the heterokaryon containing this allele was grown under conditions favoring the RIPed nucleus, no MOM19 protein was detectable in the mitochondria of the strain. Homokaryotic strains containing the RIPed allele exhibit a complex and extremely slow growth phenotype suggesting that the product of the mom-19 gene is important in N. crassa.

Cell ◽  
2000 ◽  
Vol 100 (5) ◽  
pp. 551-560 ◽  
Author(s):  
Yoshito Abe ◽  
Toshihiro Shodai ◽  
Takanori Muto ◽  
Katsuyoshi Mihara ◽  
Hisayoshi Torii ◽  
...  

2016 ◽  
Vol 397 (11) ◽  
pp. 1097-1114 ◽  
Author(s):  
Sebastian P. Straub ◽  
Sebastian B. Stiller ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Abstract Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.


1998 ◽  
Vol 274 (5) ◽  
pp. C1380-C1387 ◽  
Author(s):  
Mark Takahashi ◽  
Alan Chesley ◽  
Damien Freyssenet ◽  
David A. Hood

We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4- to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis.


1988 ◽  
Vol 107 (6) ◽  
pp. 2037-2043 ◽  
Author(s):  
D Vestweber ◽  
G Schatz

Bovine pancreatic trypsin inhibitor (which contains three intramolecular disulfide bridges) was chemically coupled to the COOH terminus of a purified artificial mitochondrial precursor protein. When the resulting chimeric precursor was presented to energized isolated yeast mitochondria, its trypsin inhibitor moiety prevented the protein from completely entering the organelle; the protein remained stuck across both mitochondrial membranes, with its NH2 terminus in the matrix and its trypsin inhibitor moiety still exposed on the mitochondrial surface. The incompletely imported protein appeared to "jam" mitochondrial protein import sites since it blocked import of three authentic mitochondrial precursor proteins; it did not collapse the potential across the mitochondrial inner membrane. Quantification of the inhibition indicated that each isolated mitochondrial particle contains between 10(2) and 10(3) protein import sites.


2021 ◽  
Author(s):  
Anna M. Schlagowski ◽  
Katharina Knöringer ◽  
Sandrine Morlot ◽  
Ana Sáchez Vicente ◽  
Felix Boos ◽  
...  

AbstractThe formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient material and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but the causalities remained unclear. We used yeast as model system to analyze the relevance of mitochondrial processes for the behavior of an aggregation-prone polyQ protein derived from human huntingtin. Induction of Q97-GFP rapidly leads to insoluble cytosolic aggregates and cell death. Although this aggregation impairs mitochondrial respiration only slightly, it interferes with efficient import of mitochondrial precursor proteins. Mutants in the import component Mia40 are hypersensitive to Q97-GFP. Even more surprisingly, Mia40 overexpression strongly suppresses the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the posttranslational import into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Owing to its rate-limiting role for mitochondrial protein import, Mia40 acts as a regulatory component in this competition. This role of Mia40 as dynamic regulator in mitochondrial biogenesis can apparently be exploited to stabilize cytosolic proteostasis. (174/175 words)


Sign in / Sign up

Export Citation Format

Share Document