scholarly journals Genetic Control of Recombination Partner Preference in Yeast Meiosis: Isolation and Characterization of Mutants Elevated for Meiotic Unequal Sister-Chromatid Recombination

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 621-641 ◽  
Author(s):  
Dawn A Thompson ◽  
Franklin W Stahl

AbstractMeiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.

Nature ◽  
1996 ◽  
Vol 383 (6603) ◽  
pp. 840-843 ◽  
Author(s):  
David Lydall ◽  
Yuri Nikolsky ◽  
Douglas K. Bishop ◽  
Ted Weinert

Genetics ◽  
1992 ◽  
Vol 130 (2) ◽  
pp. 251-262 ◽  
Author(s):  
L C De Veaux ◽  
N A Hoagland ◽  
G R Smith

Abstract We have analyzed 43 recessive mutations reducing meiotic intragenic recombination in Schizosaccharomyces pombe. These mutations were isolated by a screen for reduced plasmid-by-chromosome recombination at the ade6 locus. Sixteen of the mutations define 10 new complementation groups, bringing to 17 the number of genes identified to be involved in meiotic recombination. The mutations were grouped into three discrete classes depending on the severity of the recombination deficiency in crosses involving the ade6-M26 recombination hotspot. Class I mutations caused at least a 1000-fold reduction in M26-stimulated intragenic recombination at the ade6 locus. Class II mutations reduced M26-stimulated recombination approximately 100-fold. Class III mutations caused a 3-10-fold reduction in either M26-stimulated or non-hotspot recombination. We obtained multiple alleles of class I and class II mutations, suggesting that we may be nearing saturation for mutations of this type. As a first step toward mapping, we used mitotic segregation to assign fourteen of the rec genes to chromosomes. Mutations in the six rec genes tested also caused a decrease in intragenic recombination at the ura4 locus; five of these mutations also reduced intergenic recombination between the pro2 and arg3 genes. These results indicate that these multiple rec gene products are required for high level meiotic recombination throughout the S. pombe genome.


1998 ◽  
Vol 180 (8) ◽  
pp. 2175-2185 ◽  
Author(s):  
Christian D. Mohr ◽  
Joanna K. MacKichan ◽  
Lucy Shapiro

ABSTRACT The ordered assembly of the Caulobacter crescentusflagellum is accomplished in part through the organization of the flagellar structural genes in a regulatory hierarachy of four classes. Class II genes are the earliest to be expressed and are activated at a specific time in the cell cycle by the CtrA response regulator. In order to identify gene products required for early events in flagellar assembly, we used the known phenotypes of class II mutants to identify new class II flagellar genes. In this report we describe the isolation and characterization of a flagellar gene, fliX. AfliX null mutant is nonmotile, lacks a flagellum, and exhibits a marked cell division defect. Epistasis experiments placedfliX within class II of the flagellar regulatory hierarchy, suggesting that FliX functions at an early stage in flagellar assembly. The fliX gene encodes a 15-kDa protein with a putative N-terminal signal sequence. Expression of fliX is under cell cycle control, with transcription beginning relatively early in the cell cycle and peaking in Caulobacter predivisional cells. Full expression of fliX was found to be dependent onctrA, and DNase I footprinting analysis demonstrated a direct interaction between CtrA and the fliX promoter. ThefliX gene is located upstream and is divergently transcribed from the class III flagellar gene flgI, which encodes the basal body P-ring monomer. Analysis of thefliX-flgI intergenic region revealed an arrangement ofcis-acting elements similar to that of another set ofCaulobacter class II and class III flagellar genes,fliL-flgF, that is also divergently transcribed. In parallel with the FliL protein, FliX copurifies with the membrane fraction, and although its expression is cell cycle controlled, the protein is present throughout the cell cycle.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 413
Author(s):  
Hui-Ling Chen ◽  
Jason Chen-Chieh Fang ◽  
Chia-Jung Chang ◽  
Ti-Feng Wu ◽  
I-Kuan Wang ◽  
...  

Background. Previous studies have shown that environmental cadmium exposure could disrupt salivary gland function and is associated with dental caries and reduced bone density. Therefore, this cross-sectional study attempted to determine whether tooth decay with tooth loss following cadmium exposure is associated with some dental or skeletal traits such as malocclusions, sagittal skeletal pattern, and tooth decay. Methods. Between August 2019 and June 2020, 60 orthodontic patients with no history of previous orthodontics, functional appliances, or surgical treatment were examined. The patients were stratified into two groups according to their urine cadmium concentrations: high (>1.06 µg/g creatinine, n = 28) or low (<1.06 µg/g creatinine, n = 32). Results. The patients were 25.07 ± 4.33 years old, and most were female (female/male: 51/9 or 85%). The skeletal relationship was mainly Class I (48.3%), followed by Class II (35.0%) and Class III (16.7%). Class I molar relationships were found in 46.7% of these patients, Class II molar relationships were found in 15%, and Class III molar relationships were found in 38.3%. The mean decayed, missing, and filled surface (DMFS) score was 8.05 ± 5.54, including 2.03 ± 3.11 for the decayed index, 0.58 ± 1.17 for the missing index, and 5.52 ± 3.92 for the filled index. The mean index of complexity outcome and need (ICON) score was 53.35 ± 9.01. The facial patterns of these patients were within the average low margin (26.65 ± 5.53 for Frankfort–mandibular plane angle (FMA)). There were no significant differences in the above-mentioned dental indices between patients with high urine cadmium concentrations and those with low urine cadmium concentrations. Patients were further stratified into low (<27, n = 34), average (27–34, n = 23), and high (>34, n = 3) FMA groups. There were no statistically significant differences in the urine cadmium concentration among the three groups. Nevertheless, a marginally significant p-value of 0.05 for urine cadmium concentration was noted between patients with low FMA and patients with high FMA. Conclusion. This analysis found no association between environmental cadmium exposure and dental indices in our orthodontic patients.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 607-620 ◽  
Author(s):  
Jeremy M Grushcow ◽  
Teresa M Holzen ◽  
Ken J Park ◽  
Ted Weinert ◽  
Michael Lichten ◽  
...  

Abstract Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.


Sign in / Sign up

Export Citation Format

Share Document