Calcium/Calmodulin-Dependent Protein Kinase II Regulates Caenorhabditis elegans Locomotion in Concert With a Go/Gq Signaling Network

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1069-1082 ◽  
Author(s):  
Merrilee Robatzek ◽  
James H Thomas

Abstract Caenorhabditis elegans locomotion is a complex behavior generated by a defined set of motor neurons and interneurons. Genetic analysis shows that UNC-43, the C. elegans Ca2+/calmodulin protein kinase II (CaMKII), controls locomotion rate. Elevated UNC-43 activity, from a gain-of-function mutation, causes severely lethargic locomotion, presumably by inappropriate phosphorylation of targets. In a genetic screen for suppressors of this phenotype, we identified multiple alleles of four genes in a Go/Gq G-protein signaling network, which has been shown to regulate synaptic activity via diacylglycerol. Mutations in goa-1, dgk-1, eat-16, or eat-11 strongly or completely suppressed unc-43(gf) lethargy, but affected other mutants with reduced locomotion only weakly. We conclude that CaMKII and Go/Gq pathways act in concert to regulate synaptic activity, perhaps through a direct interaction between CaMKII and Go.

1998 ◽  
Vol 67 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Wendy W. Waters ◽  
Pat L. Chen ◽  
Newell H. McArthur ◽  
Pete A. Moreno ◽  
Paul G. Harms

Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 211-224 ◽  
Author(s):  
Joseph H Chou ◽  
Cornelia I Bargmann ◽  
Piali Sengupta

Abstract Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentrations. odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins and is the founding member of a C. elegans gene family with at least seven other members. Alternative splicing of odr-2 yields three predicted proteins that differ only at the extreme amino terminus. The three isoforms have different promoters, and one isoform may have a unique role in olfaction. An epitope-tagged ODR-2 protein is expressed at high levels in sensory neurons, motor neurons, and interneurons and is enriched in axons. The AWC neurons are superficially normal in their development and structure in odr-2 mutants, but their function is impaired. Our results suggest that ODR-2 may regulate AWC signaling within the neuronal network required for chemotaxis.


Sign in / Sign up

Export Citation Format

Share Document