Drosophila melanogaster Importin α1 and α3 Can Replace Importin α2 During Spermatogenesis but Not Oogenesis

Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 157-170 ◽  
Author(s):  
D Adam Mason ◽  
Robert J Fleming ◽  
David S Goldfarb

Abstract Importin α’s mediate the nuclear transport of many classical nuclear localization signal (cNLS)-containing proteins. Multicellular animals contain multiple importin α genes, most of which fall into three conventional phylogenetic clades, here designated α1, α2, and α3. Using degenerate PCR we cloned Drosophila melanogaster importin α1, α2, and α3 genes, demonstrating that the complete conventional importin α gene family arose prior to the split between invertebrates and vertebrates. We have begun to analyze the genetic interactions among conventional importin α genes by studying their capacity to rescue the male and female sterility of importin α2 null flies. The sterility of α2 null males was rescued to similar extents by importin α1, α2, and α3 transgenes, suggesting that all three conventional importin α’s are capable of performing the important role of importin α2 during spermatogenesis. In contrast, sterility of α2 null females was rescued only by importin α2 transgenes, suggesting that it plays a paralog-specific role in oogenesis. Female infertility was also rescued by a mutant importin α2 transgene lacking a site that is normally phosphorylated in ovaries. These rescue experiments suggest that male and female gametogenesis have distinct requirements for importin α2.

Genetics ◽  
1982 ◽  
Vol 101 (3-4) ◽  
pp. 417-429
Author(s):  
Nita N Scobie ◽  
Henry E Schaffer

ABSTRACT A set of 1,000 "mutation accumulation" lines of Drosophila melanogaster, which originated from two different wild-type, lethal-bearing second chromosomes (Yamaguchi and Mukai 1974; Mukai and Cockerham 1977), was examined for evidence of a mutator factor by using the occurrence of recessive visible mutations and male recombination to identify its presence. The 1,000 lines were screened at approximately generation 240 for the presence of recessive visible mutations at twelve loci, by outcrossing to a balanced multiply marked second chromosome stock (Muller's "12ple" Bowling Green). Twenty-three lines were found to carry a visible mutation at one of the loci. Seventeen of these lines carried a mutation of either the dp or the vg locus. Mutations found in three lines, two at the dp locus and one at the vg locus, demonstrated instability as revertants to the wild type and were recovered and verified in these three cases. The three revertant lines, and three lines showing no reversion, were tested for their ability to induce male recombination. Male recombination was observed in the three lines in which revertants were recovered. Male and female sterility assays indicated conclusively that these "hybrid dysgenic" characteristics could not be used to identify lines potentially carrying mutator factors, whereas the consistent ability of the lines to induce high rates of reversion and male recombination was successful in determining that the "mutation accumulation lines" do possess mutator factors.


1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 987-997 ◽  
Author(s):  
Bryan Kindiger

Cytogenetic investigations of meiosis in hybrids between maize and Tripsacum have been well documented; however, the inherent problem of male and female sterility has not been addressed either on a genetic or cytogenetic level. The purpose of this cytological study was to identify some of the probable causes of male sterility in maize × Tripsacum dactyloides hybrids. Disturbances in pollen development of maize × T. dactyloides hybrids, derived from both diploid (2n) and tetraploid (4n) Tripsacum sources, were commonly observed. Anomalies in the development of the microspore apparently occurred because of a failure of the chromosomes to congregate at the metaphase plate, development of a tripolar spindle, and failure of cytokinesis at the first and second meiotic divisions. Phenotypic features of abnormal microspore development were the maturation of large pollen grains, "Siamese" pollen grains, the occurrence of variable invaginations, and a nuclear budding-type behavior. These abnormalities were not observed in the 56-chromosome amphidiploid or the 38-chromosome backcross generations.Key words: maize, Tripsacum, microspore, sterility.


1989 ◽  
Vol 86 (17) ◽  
pp. 6696-6698 ◽  
Author(s):  
F A Laski ◽  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary ◽  
G M Rubin

Drosophila melanogaster strains with a stably incorporated amber suppressor tRNA gene have been generated. A tRNATyr gene was site specifically mutated to produce an anticodon sequence that recognizes the amber codon and then introduced into Drosophila by using P-element-mediated transformation. Transformants from four integration events were recovered. Two integrations resulted in both male and female sterility, whereas the other two resulted in male sterility but female fertility. Strains derived from the two female-fertile integration events were shown to have a low level of amber-suppressing activity by their ability to suppress an amber mutation in a chloramphenicol acetyltransferase gene.


2014 ◽  
Vol 30 ◽  
pp. 413-428
Author(s):  
Athena Pantazis ◽  
Samuel J. Clark

Genetics ◽  
1973 ◽  
Vol 74 (2) ◽  
pp. 351-361
Author(s):  
Chozo Oshima ◽  
Takao K Watanabe

ABSTRACT Three or four percent of the wild flies in natural populations of D. melanogaster have been found to be sterile. An analysis of sterility associated with the second chromosome revealed a much lower frequency of genetically sterile flies. The accumulation of sterility genes in a cage population was proportional to that of lethal genes, as were their equilibrium frequencies in several natural populations. Many sterile chromosomes were associated with low viability due to pleiotropic effects. The number of chromosomes leading to sterility in both sexes was larger than the expectation based on random combination of male and female sterility genes. This suggests that there is some linkage disequilibrium between male and female sterility genes, as well as a pleiotropic effect of single sterility genes. Some sterility genes were maintained in natural and cage populations, and the patterns of persistence of the sterility genes were very similar to those of lethal genes.


Sign in / Sign up

Export Citation Format

Share Document