suppressor trna
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 1)

H-INDEX

29
(FIVE YEARS 0)

2021 ◽  
Vol 20 ◽  
pp. S280
Author(s):  
J. Porter ◽  
W. Ko ◽  
K. Edwards ◽  
J. Lueck


2020 ◽  
Author(s):  
Anne Zemella ◽  
Theresa Richter ◽  
Lena Thoring ◽  
Stefan Kubick

This is part 3.2 of the "A Combined Cell-Free Protein Synthesis and Fluorescence-Based Approach to Investigate GPCR Binding Properties" collection of protocols: https://www.protocols.io/view/a-combined-cell-free-protein-synthesis-and-fluores-bqntmven Collection Abstract: Fluorescent labeling of de novo synthesized proteins is in particular a valuable tool for functional and structural studies of membrane proteins. In this context, we present two methods for the site-specific fluorescent labeling of difficult-to-express membrane proteins in combination with cell-free protein synthesis. The cell-free protein synthesis system is based on Chinese Hamster Ovary Cells (CHO) since this system contains endogenous membrane structures derived from the endoplasmic reticulum. These so-called microsomes enable a direct integration of membrane proteins into a biological membrane. In this protocol the first part describes the fluorescent labeling by using a precharged tRNA, loaded with a fluorescent amino acid. The second part describes the preparation of a modified aminoacyl-tRNA-synthetase and a suppressor tRNA that are applied to the CHO cell-free system to enable the incorporation of a non-canonical amino acid. The reactive group of the non-canonical amino acid is further coupled to a fluorescent dye. Both methods utilize the amber stop codon suppression technology. The successful fluorescent labeling of the model G protein-coupled receptor adenosine A2A (Adora2a) is analyzed by in-gel-fluorescence, a reporter protein assay, and confocal laser scanning microscopy (CLSM). Moreover, a ligand-dependent conformational change of the fluorescently labeled Adora2a was analyzed by bioluminescence resonance energy transfer (BRET). For Introduction and Notes, please see: https://www.protocols.io/view/a-combined-cell-free-protein-synthesis-and-fluores-bqntmven/guidelines



Author(s):  
Joanne M L Ho ◽  
Corwin A Miller ◽  
Sydney E Parks ◽  
Jacob R Mattia ◽  
Matthew R Bennett

Abstract Ligand-inducible genetic systems are the mainstay of synthetic biology, allowing gene expression to be controlled by the presence of a small molecule. However, ‘leaky’ gene expression in the absence of inducer remains a persistent problem. We developed a leak dampener tool that drastically reduces the leak of inducible genetic systems while retaining signal in Escherichia coli. Our system relies on a coherent feedforward loop featuring a suppressor tRNA that enables conditional readthrough of silent non-sense mutations in a regulated gene, and this approach can be applied to any ligand-inducible transcription factor. We demonstrate proof-of-principle of our system with the lactate biosensor LldR and the arabinose biosensor AraC, which displayed a 70-fold and 630-fold change in output after induction of a fluorescence reporter, respectively, without any background subtraction. Application of the tool to an arabinose-inducible mutagenesis plasmid led to a 540-fold change in its output after induction, with leak decreasing to the level of background mutagenesis. This study provides a modular tool for reducing leak and improving the fold-induction within genetic circuits, demonstrated here using two types of biosensors relevant to cancer detection and genetic engineering.





Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 255 ◽  
Author(s):  
Sviatlana Smolskaya ◽  
Yaroslav Andreev

More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.



Selenium ◽  
2016 ◽  
pp. 3-12 ◽  
Author(s):  
Bradley A. Carlson ◽  
Byeong Jae Lee ◽  
Petra A. Tsuji ◽  
Ryuta Tobe ◽  
Jin Mo Park ◽  
...  


2015 ◽  
Vol 112 (19) ◽  
pp. 6015-6020 ◽  
Author(s):  
Arpita Bhattacharya ◽  
Caroline Köhrer ◽  
Debabrata Mandal ◽  
Uttam L. RajBhandary

Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeonHaloferax volcaniiare active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons inH. volcanii. Additionally, transformation of aΔpyrE2 H. volcaniistrain with plasmids carrying the genes for apyrE2amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in thepyrE2gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea.



Sign in / Sign up

Export Citation Format

Share Document