A MUTATOR FACTOR IN A STRAIN OF DROSOPHILA MELANOGASTER: IDENTIFIED BY USE OF MUTATION, REVERSION RATES AND MALE RECOMBINATION

Genetics ◽  
1982 ◽  
Vol 101 (3-4) ◽  
pp. 417-429
Author(s):  
Nita N Scobie ◽  
Henry E Schaffer

ABSTRACT A set of 1,000 "mutation accumulation" lines of Drosophila melanogaster, which originated from two different wild-type, lethal-bearing second chromosomes (Yamaguchi and Mukai 1974; Mukai and Cockerham 1977), was examined for evidence of a mutator factor by using the occurrence of recessive visible mutations and male recombination to identify its presence. The 1,000 lines were screened at approximately generation 240 for the presence of recessive visible mutations at twelve loci, by outcrossing to a balanced multiply marked second chromosome stock (Muller's "12ple" Bowling Green). Twenty-three lines were found to carry a visible mutation at one of the loci. Seventeen of these lines carried a mutation of either the dp or the vg locus. Mutations found in three lines, two at the dp locus and one at the vg locus, demonstrated instability as revertants to the wild type and were recovered and verified in these three cases. The three revertant lines, and three lines showing no reversion, were tested for their ability to induce male recombination. Male recombination was observed in the three lines in which revertants were recovered. Male and female sterility assays indicated conclusively that these "hybrid dysgenic" characteristics could not be used to identify lines potentially carrying mutator factors, whereas the consistent ability of the lines to induce high rates of reversion and male recombination was successful in determining that the "mutation accumulation lines" do possess mutator factors.

Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 157-170 ◽  
Author(s):  
D Adam Mason ◽  
Robert J Fleming ◽  
David S Goldfarb

Abstract Importin α’s mediate the nuclear transport of many classical nuclear localization signal (cNLS)-containing proteins. Multicellular animals contain multiple importin α genes, most of which fall into three conventional phylogenetic clades, here designated α1, α2, and α3. Using degenerate PCR we cloned Drosophila melanogaster importin α1, α2, and α3 genes, demonstrating that the complete conventional importin α gene family arose prior to the split between invertebrates and vertebrates. We have begun to analyze the genetic interactions among conventional importin α genes by studying their capacity to rescue the male and female sterility of importin α2 null flies. The sterility of α2 null males was rescued to similar extents by importin α1, α2, and α3 transgenes, suggesting that all three conventional importin α’s are capable of performing the important role of importin α2 during spermatogenesis. In contrast, sterility of α2 null females was rescued only by importin α2 transgenes, suggesting that it plays a paralog-specific role in oogenesis. Female infertility was also rescued by a mutant importin α2 transgene lacking a site that is normally phosphorylated in ovaries. These rescue experiments suggest that male and female gametogenesis have distinct requirements for importin α2.


Genetics ◽  
1990 ◽  
Vol 126 (3) ◽  
pp. 619-623 ◽  
Author(s):  
E R Lozovskaya ◽  
V S Scheinker ◽  
M B Evgen'ev

Abstract A new example of "hybrid dysgenesis" has been demonstrated in the F1 progeny of crosses between two different strains of Drosophila virilis. The dysgenic traits were observed only in hybrids obtained when wild-type females (of the Batumi strain 9 from Georgia, USSR) were crossed to males from a marker strain (the long-established laboratory strain, strain 160, carrying recessive markers on all its autosomes). The phenomena observed include high frequencies of male and female sterility, male recombination, chromosomal nondisjunction, transmission ratio distortion and the appearance of numerous visible mutations at different loci in the progeny of dysgenic crosses. The sterility demonstrated in the present study is similar to that of P-M dysgenesis in Drosophila melanogaster and apparently results from underdevelopment of the gonads in both sexes, this phenomenon being sensitive to developmental temperature. However, in contrast to the P-M and I-R dysgenic systems in D. melanogaster, in D. virilis the highest level of sterility (95-98%) occurs at 23-25 degrees. Several of the mutations isolated from the progeny of dysgenic crosses (e.g., singed) proved to be unstable and reverted to wild type. We hypothesize that a mobile element ("Ulysses") which we have recently isolated from a dysgenically induced white eye mutation may be responsible for the phenomena observed.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 987-997 ◽  
Author(s):  
Bryan Kindiger

Cytogenetic investigations of meiosis in hybrids between maize and Tripsacum have been well documented; however, the inherent problem of male and female sterility has not been addressed either on a genetic or cytogenetic level. The purpose of this cytological study was to identify some of the probable causes of male sterility in maize × Tripsacum dactyloides hybrids. Disturbances in pollen development of maize × T. dactyloides hybrids, derived from both diploid (2n) and tetraploid (4n) Tripsacum sources, were commonly observed. Anomalies in the development of the microspore apparently occurred because of a failure of the chromosomes to congregate at the metaphase plate, development of a tripolar spindle, and failure of cytokinesis at the first and second meiotic divisions. Phenotypic features of abnormal microspore development were the maturation of large pollen grains, "Siamese" pollen grains, the occurrence of variable invaginations, and a nuclear budding-type behavior. These abnormalities were not observed in the 56-chromosome amphidiploid or the 38-chromosome backcross generations.Key words: maize, Tripsacum, microspore, sterility.


1989 ◽  
Vol 86 (17) ◽  
pp. 6696-6698 ◽  
Author(s):  
F A Laski ◽  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary ◽  
G M Rubin

Drosophila melanogaster strains with a stably incorporated amber suppressor tRNA gene have been generated. A tRNATyr gene was site specifically mutated to produce an anticodon sequence that recognizes the amber codon and then introduced into Drosophila by using P-element-mediated transformation. Transformants from four integration events were recovered. Two integrations resulted in both male and female sterility, whereas the other two resulted in male sterility but female fertility. Strains derived from the two female-fertile integration events were shown to have a low level of amber-suppressing activity by their ability to suppress an amber mutation in a chloramphenicol acetyltransferase gene.


1978 ◽  
Vol 32 (3) ◽  
pp. 239-247 ◽  
Author(s):  
George Yannopoulos

SUMMARYThe sterility which is associated with male recombination induced by 31.1 MRF was studied genetically and cytologically. In all crosses it was found that female sterility mainly involves failure of the heterozygous females to lay eggs because their ovaries are atrophic. Under the optical microscope, the atrophic ovaries were seen to contain only germaria in their ovarioles. It was also found that in some cases 31.1 MRF affects only one of the two ovaries of the same female. This observation suggests that defective development of atrophic ovaries is not due to influences from the rest of the body but should be attributed to the inability of the germ cells to differentiate. Moreover, various stocks as well as homologous chromosomes were found to react differently to 31.1 MRF with respect to female sterility. In their effect on male sterility it was observed that some strains behave as neutral and others as reactive when mated with 31.1/Cy L4 males.


1954 ◽  
Vol 45 (2) ◽  
pp. 323-328 ◽  
Author(s):  
R. W. Kerr

DDT in odourless distillate was topically applied to individual males and females of the Rothamated wild type of Drosophila melanogaster Mg. The lines for the regression of mortality in probits on log. dosage of DDT for males and females, five days old, were parallel, and males were 1·86 times as susceptible as females. Susceptibility was high in young flies, but rapidly decreased with age, to a minimum at about five days, thereafter increasing rapidly in males and not significantly in females. The need for sexing and standardising age in flies used for toxicological investigations was thus demonstrated.Respiration rate in untreated flies was measured by a modified Barcroft method. In males it increased with age up to five days, and then decreased; in females it increased with age up to nine days. Variations with age in respiration rate and susceptibility to DDT were negatively correlated.


2020 ◽  
Author(s):  
Crystal M. Vincent ◽  
Marc S. Dionne

AbstractMale and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune-induced versus microbe-induced pathology, and whether these may differ for the sexes. Here, through measuring metabolic and physiological outputs in wild-type and immune-compromised Drosophila melanogaster, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the Imd pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant of infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


Sign in / Sign up

Export Citation Format

Share Document