amber suppressor
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 0)

H-INDEX

20
(FIVE YEARS 0)

2016 ◽  
Vol 113 (13) ◽  
pp. 3615-3620 ◽  
Author(s):  
Xiaozhou Luo ◽  
Claudio Zambaldo ◽  
Tao Liu ◽  
Yuhan Zhang ◽  
Weimin Xuan ◽  
...  

Thiopeptides are a subclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs) with complex molecular architectures and an array of biological activities, including potent antimicrobial activity. Here we report the generation of thiopeptides containing noncanonical amino acids (ncAAs) by introducing orthogonal amber suppressor aminoacyl-tRNA synthetase/tRNA pairs into a thiocillin producer strain ofBacillus cereus. We demonstrate that thiopeptide variants containing ncAAs with bioorthogonal chemical reactivity can be further postbiosynthetically modified with biophysical probes, including fluorophores and photo-cross-linkers. This work allows the site-specific incorporation of ncAAs into thiopeptides to increase their structural diversity and probe their biological activity; similar approaches can likely be applied to other classes of RiPPs.


2016 ◽  
Vol 14 (9) ◽  
pp. 2671-2678 ◽  
Author(s):  
Atsushi Ogawa ◽  
Yuki Namba ◽  
Mai Gakumasawa

Amber suppressor tRNAs (sup-tRNAs) were rationally optimized toward efficient incorporation of a non-natural amino acid (AcPhe) into protein in a eukaryotic wheat germ extract.


2015 ◽  
Vol 112 (19) ◽  
pp. 6015-6020 ◽  
Author(s):  
Arpita Bhattacharya ◽  
Caroline Köhrer ◽  
Debabrata Mandal ◽  
Uttam L. RajBhandary

Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeonHaloferax volcaniiare active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons inH. volcanii. Additionally, transformation of aΔpyrE2 H. volcaniistrain with plasmids carrying the genes for apyrE2amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in thepyrE2gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea.


2010 ◽  
Vol 57 (4) ◽  
Author(s):  
Anna Sikora ◽  
Elżbieta Grzesiuk

This review concerns reversion of the argE3 (ochre) nonsense mutation to prototrophy in E. coli AB1157 strain as an informative system for mutation detection. Strain AB1157 bears the argE3 (ochre), hisG4 (ochre) and thr-1 (amber) mutations, and the supE44 amber suppressor on its chromosome. The Arg(+) phenotype can be restored by (i) any base substitution at the argE3 site that changes the nonsense UAA codon to any sense nucleotide triplet or to UAG recognized by the supE44 amber suppressor, or (ii) suppressor mutations enabling the reading of the UAA nonsense codon. The argE3 → Arg(+) reversion-based system enables (i) determination of the spontaneous or induced mutation level; (ii) determination of base substitutions (suppressor analysis); (iii) examination of transcription-coupled repair (TCR) since targets for DNA damage are situated on the transcribed or coding strand of DNA; (iv) detection of mutations resulting from single stranded DNA damage. This review focuses on studies carried out since the early 1990s till now with the application of the AB1157-based mutation detection system. Recently, the system has been used to obtain new data on the processes of methyl methanesulfonate-induced mutagenesis and DNA repair in E. coli alkB⁻ mutants.


2010 ◽  
Vol 192 (22) ◽  
pp. 6039-6044 ◽  
Author(s):  
B. Singaravelan ◽  
B. R. Roshini ◽  
M. Hussain Munavar

ABSTRACT Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.


RNA ◽  
2010 ◽  
Vol 16 (8) ◽  
pp. 1660-1672 ◽  
Author(s):  
J. Gubbens ◽  
S. J. Kim ◽  
Z. Yang ◽  
A. E. Johnson ◽  
W. R. Skach

2009 ◽  
Vol 48 (48) ◽  
pp. 9148-9151 ◽  
Author(s):  
Jiantao Guo ◽  
Charles E. Melançon ◽  
Hyun Soo Lee ◽  
Dan Groff ◽  
Peter G. Schultz

2009 ◽  
Vol 121 (48) ◽  
pp. 9312-9315 ◽  
Author(s):  
Jiantao Guo ◽  
Charles E. Melançon ◽  
Hyun Soo Lee ◽  
Dan Groff ◽  
Peter G. Schultz

Sign in / Sign up

Export Citation Format

Share Document