scholarly journals Loss of CDC5 Function in Saccharomyces cerevisiae Leads to Defects in Swe1p Regulation and Bfa1p/Bub2p-Independent Cytokinesis

Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Chong Jin Park ◽  
Sukgil Song ◽  
Philip R Lee ◽  
Wenying Shou ◽  
Raymond J Deshaies ◽  
...  

Abstract In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G2/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Δ defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis.

2018 ◽  
Author(s):  
J Whalen ◽  
C Sniffen ◽  
S Gartland ◽  
M Vannini ◽  
A Seshan

ABSTRACTThe proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In budding yeast, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2. The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1. We conclude that Bfa1 functions to both inhibit and activate late mitotic events.


Genetics ◽  
2010 ◽  
Vol 185 (3) ◽  
pp. 841-854 ◽  
Author(s):  
Elisa Varela ◽  
Ulrich Schlecht ◽  
Anca Moina ◽  
James D. Fackenthal ◽  
Brian K. Washburn ◽  
...  

2001 ◽  
Vol 11 (10) ◽  
pp. 784-788 ◽  
Author(s):  
Sarah E. Lee ◽  
Lisa M. Frenz ◽  
Nicholas J. Wells ◽  
Anthony L. Johnson ◽  
Leland H. Johnston

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1545-1556
Author(s):  
Kazuhide Asakawa ◽  
Akio Toh-e

Abstract A subgroup of the karyopherin β (also called importin β) protein that includes budding yeast Kap104 and human transportin/karyopherin β2 is reported to function as a receptor for the transport of mRNA-binding proteins into the nucleus. We identified KAP104 as a responsible gene for a suppressor mutation of cdc15-2. We found that the kap104-E604K mutation suppressed the temperature-sensitive growth of cdc15-2 cells by promoting the exit from mitosis and suppressed the temperature sensitivity of various mitoticexit mutations. The cytokinesis defect of these mitotic-exit mutants was not suppressed by kap104-E604K. Furthermore, the kap104-E604K mutation delays entry into DNA synthesis even at a permissive temperature. In cdc15-2 kap104-E604K cells, SWI5 and SIC1, but not CDH1, became essential at a high temperature, suggesting that the kap104-E604K mutation promotes mitotic exit via the Swi5-Sic1 pathway. Interestingly, SPO12, which is involved in the release of Cdc14 from the nucleolus during early anaphase, also became essential in cdc15-2 kap104-E604K cells at a high temperature. The kap104-E604K mutation caused a partial delocalization of Cdc14 from the nucleolus during interphase. This delocalization of Cdc14 was suppressed by the deletion of SPO12. These results suggest that a mutation in Kap104 stimulates exit from mitosis through the activation of Cdc14 and implies a novel role for Kap104 in cell-cycle progression in budding yeast.


2004 ◽  
Vol 15 (4) ◽  
pp. 1519-1532 ◽  
Author(s):  
Jeffrey N. Molk ◽  
Scott C. Schuyler ◽  
Jenny Y. Liu ◽  
James G. Evans ◽  
E. D. Salmon ◽  
...  

In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade.


2001 ◽  
Vol 21 (5) ◽  
pp. 1603-1612 ◽  
Author(s):  
Galit Shenhar ◽  
Yona Kassir

ABSTRACT The choice between meiosis and alternative developmental pathways in budding yeast depends on the expression and activity of transcriptional activator Ime1. The transcription of IME1is repressed in the presence of glucose, and a low basal level ofIME1 RNA is observed in vegetative cultures with acetate as the sole carbon source. IREu, a 32-bp element in the IME1promoter, exhibits upstream activation sequence activity depending on Msn2 and -4 and the presence of acetate. We show that in the presence of glucose IREu functions as a negative element and that Sok2 mediates this repression activity. We show that Sok2 associates with Msn2. Sok2 functions as a general repressor whose availability and activity depend on glucose. The activity of Sok2 as a repressor depends on phosphorylation of T598 by protein kinase A (PKA). Relief of repression of Sok2 depends on both the N-terminal domain of Sok2 and Ime1. In the absence of glucose and the presence of Ime1 Sok2 is converted to a weak activator. Overexpression of Sok2 or mild expression of Sok2 with its N-terminal domain deleted leads to a decrease in sporulation. Previously it was reported that overexpression of Sok2 suppresses the growth defect resulting from a temperature-sensitive PKA; thus Sok2 has a positive role in mitosis. We show that Candida albicansEfg1, a homolog of Sok2, complements sok2Δ in repressing IREu. Our results demonstrate that Sok2, a positive regulator of mitosis, and Efg1, a positive regulator of filamentation, function as negative regulators of meiosis. We suggest that cells use the same regulators with opposing effects to ensure that meiosis will be an alternative to mitosis.


2009 ◽  
Vol 20 (1) ◽  
pp. 245-255 ◽  
Author(s):  
William G. Waples ◽  
Charly Chahwan ◽  
Marta Ciechonska ◽  
Brigitte D. Lavoie

The completion of chromosome segregation during anaphase requires the hypercondensation of the ∼1-Mb rDNA array, a reaction dependent on condensin and Cdc14 phosphatase. Using systematic genetic screens, we identified 29 novel genetic interactions with budding yeast condensin. Of these, FOB1, CSM1, LRS4, and TOF2 were required for the mitotic condensation of the tandem rDNA array localized on chromosome XII. Interestingly, whereas Fob1 and the monopolin subunits Csm1 and Lrs4 function in rDNA condensation throughout M phase, Tof2 was only required during anaphase. We show that Tof2, which shares homology with the Cdc14 inhibitor Net1/Cfi1, interacts with Cdc14 phosphatase and its deletion suppresses defects in mitotic exit network (MEN) components. Consistent with these genetic data, the onset of Cdc14 release from the nucleolus was similar in TOF2 and tof2Δ cells; however, the magnitude of the release was dramatically increased in the absence of Tof2, even when the MEN pathway was compromised. These data support a model whereby Tof2 coordinates the biphasic release of Cdc14 during anaphase by restraining a population of Cdc14 in the nucleolus after activation of the Cdc14 early anaphase release (FEAR) network, for subsequent release by the MEN.


2021 ◽  
Author(s):  
Shen Jiangyan ◽  
Kaoru Takegawa ◽  
Gislene Pereira ◽  
Hiromi Maekawa

The Mitotic exit network (MEN) is a conserved signalling pathway essential for termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Amongst O. polymorpha protein kinases that have some similarity to ScCdc15, only two had no other obvious homologues in S. cerevisiae and these were named OpHCD1 and OpHCD2 for homologue candidate of ScCdc15. A search in other yeast species revealed that OpHcd2 has an armadillo type fold in the C-terminal region as found in SpCdc7 kinases of the fission yeast Schizosaccharomyces pombe, which are homologues of ScCdc15; while OpHcd1 is homologous to SpSid1 kinase, a component of the Septation Initiation Network (SIN) of S. pombe not present in the MEN. Since the deletion of either OpHCD1 or OpHCD2 resulted in lethality under standard growth conditions, conditional mutants were constructed by introducing an ATP analog sensitive mutation. For OpHCD2, we constructed and used new genetic tools for O. polymorpha that combined the Tet promoter and the improved auxin-degron systems. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. These results suggest a SIN-like signalling pathway regulates termination of mitosis in O. polymorpha and that the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Michael Vannini ◽  
Victoria R. Mingione ◽  
Ashleigh Meyer ◽  
Courtney Sniffen ◽  
Jenna Whalen ◽  
...  

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.


2004 ◽  
Vol 24 (22) ◽  
pp. 9873-9886 ◽  
Author(s):  
Jung-Eun Park ◽  
Chong J. Park ◽  
Krisada Sakchaisri ◽  
Tatiana Karpova ◽  
Satoshi Asano ◽  
...  

ABSTRACT Budding yeast polo kinase Cdc5p localizes to the spindle pole body (SPB) and to the bud-neck and plays multiple roles during M-phase progression. To dissect localization-specific mitotic functions of Cdc5p, we tethered a localization-defective N-terminal kinase domain of Cdc5p (Cdc5pΔC) to the SPB or to the bud-neck with components specifically localizing to one of these sites and characterized these mutants in a cdc5Δ background. Characterization of a viable, SPB-localizing, CDC5ΔC-CNM67 mutant revealed that it is defective in timely degradation of Swe1p, a negative regulator of Cdc28p. Loss of BFA1, a negative regulator of mitotic exit, rescued the lethality of a neck-localizing CDC5ΔC-CDC12 or CDC5ΔC-CDC3 mutant but yielded severe defects in cytokinesis. These data suggest that the SPB-associated Cdc5p activity is critical for both mitotic exit and cytokinesis, whereas the bud neck-localized Cdc5p is required for proper Swe1p regulation. Interestingly, a cdc5Δ bfa1Δ swe1Δ triple mutant is viable but grows slowly, whereas cdc5Δ cells bearing both CDC5ΔC-CNM67 and CDC5ΔC-CDC12 grow well with only a mild cell cycle delay. Thus, SPB- and the bud-neck-localized Cdc5p control most of the critical Cdc5p functions and downregulation of Bfa1p and Swe1p at the respective locations are two critical factors that require Cdc5p.


Sign in / Sign up

Export Citation Format

Share Document