cell cycle transition
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kun Liu ◽  
Qiannan Liu ◽  
Yanli Sun ◽  
Jinwei Fan ◽  
Yu Zhang ◽  
...  

Aberration in the control of cell cycle contributes to the development and progression of many diseases including cancers. Ksg1 is a Schizosaccharomyces pombe fission yeast homolog of mammalian phosphoinositide-dependent protein kinase 1 (PDK1) which is regarded as a signaling hub for human tumorigenesis. A previous study reported that Ksg1 plays an important role in cell cycle progression, however, the underlying mechanism remains elusive. Our genomic library screen for novel elements involved in Ksg1 function identified two serine/threonine kinases, namely SAD family kinase Cdr2 and another PDK1 homolog Ppk21, as multicopy suppressors of the thermosensitive phenotype of ksg1-208 mutant. We found that overexpression of Ppk21 or Cdr2 recovered the defective cell cycle transition of ksg1-208 mutant. In addition, ksg1-208 Δppk21 cells showed more marked defects in cell cycle transition than each single mutant. Moreover, overexpression of Ppk21 failed to recover the thermosensitive phenotype of the ksg1-208 mutant when Cdr2 was lacking. Notably, the ksg1-208 mutation resulted in abnormal subcellular localization and decreased abundance of Cdr2, and Ppk21 deletion exacerbated the decreased abundance of Cdr2 in the ksg1-208 mutant. Intriguingly, expression of a mitotic inducer Cdc25 was significantly decreased in ksg1-208, Δppk21, or Δcdr2 cells, and overexpression of Ppk21 or Cdr2 partially recovered the decreased protein level of Cdc25 in the ksg1-208 mutant. Altogether, our findings indicated that Cdr2 is a novel downstream effector of PDK1 homologs Ksg1 and Ppk21, both of which cooperatively participate in regulating cell cycle progression, and Cdc25 is involved in this process in fission yeast.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Michael Vannini ◽  
Victoria R. Mingione ◽  
Ashleigh Meyer ◽  
Courtney Sniffen ◽  
Jenna Whalen ◽  
...  

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.


Author(s):  
Shuangyue Liu ◽  
Liping Chu ◽  
Mingzhu Xie ◽  
Lisha Ma ◽  
Hongmei An ◽  
...  

miR-92a-3p (microRNA-92a-3p) has been reported to be dysregulated in several cancers, and as such, it is considered to be a cancer-related microRNA. However, the influence of miR-92a-3p on biological behaviors in cervical cancer (CC) still remains unclear. Quantitative real-time PCR was used to detect miR-92a-3p levels in CC stem cells. Here, Cell Counting Kit-8 (CCK8) assay, Transwell cell invasion assay and flow cytometry assay were used to characterize the effects that miR-92a-3p and large tumor suppressor l (LATS1) had on proliferation, invasion and cell cycle transition. The luciferase reporter gene assay was used to verify the targeting relationship between miR-92a-3p and LATS1. Western Blotting was used to investigate the related signaling pathways and proteins. Data from The Cancer Genome Atlas (TCGA) showed that miR-92a-3p was upregulated in CC tissues and closely associated with overall survival. miR-92a-3p promoted proliferation, invasion and cell cycle transition in CC stem cells. The luciferase reporter assay showed that miR-92a-3p bound to the 3′-untranslated region (3′-UTR) of the LATS1 promoter. LATS1 inhibited proliferation, invasion and cell cycle transition. Results measured by Western Blotting showed that LATS1 downregulated expressions of transcriptional co-activator with PDZ-binding motif (TAZ), vimentin and cyclin E, but upregulated the expression of E-cadherin. Re-expression of LATS1 partly reversed the effects of miR-92a-3p on proliferation, invasion and cell cycle transition, as well as on TAZ, E-cadherin, vimentin, and cyclin E. miR-92a-3p promoted the malignant behavior of CC stem cells by targeting LATS1, which regulated TAZ and E-cadherin.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Junhui Yu ◽  
Zhengshui Xu ◽  
Jing Guo ◽  
Kui Yang ◽  
Jianbao Zheng ◽  
...  

AbstractThe complex interaction between tumor-associated macrophages (TAMs) and tumor cells through several soluble factors and signaling is essential for colorectal cancer (CRC) progression. However, the molecular mechanism involved remains elusive. In this study, we demonstrated that MMP1 derived from TAMs markedly facilitated colon cancer cell proliferation via accelerating cell cycle transition from G0/G1 to S and G2/M phase. Moreover, exogenous MMP1 activated cdc25a/CDK4-cyclin D1 and p21/cdc2-cyclin B1 complexes through altering c-Myc and ETV4. Mechanistic studies indicated that inhibition of PAR1 or blockage of MAPK/Erk signaling eliminated the proliferation induced by exogenous MMP1 in vitro and in vivo. In addition, ETV4 could bind to the promoter of MMP1 and activate MMP1 transcription, which confirmed the MMP1/ETV4/MMP1 positive feedback. Altogether, our study identified a cytokine paracrine manner between colon cancer cells and TAMs. MMP1/PAR1/Erk1/2/ETV4 positive feedback loop may represent to be a therapeutic target and prognostic marker in CRC.


2021 ◽  
Vol 22 (16) ◽  
pp. 8391
Author(s):  
Valerio Nardone ◽  
Marcella Barbarino ◽  
Antonio Angrisani ◽  
Pierpaolo Correale ◽  
Pierpaolo Pastina ◽  
...  

The expanding clinical application of CDK4- and CDK6-inhibiting drugs in the managements of breast cancer has raised a great interest in testing these drugs in other neoplasms. The potential of combining these drugs with other therapeutic approaches seems to be an interesting work-ground to explore. Even though a potential integration of CDK4 and CDK6 inhibitors with radiotherapy (RT) has been hypothesized, this kind of approach has not been sufficiently pursued, neither in preclinical nor in clinical studies. Similarly, the most recent discoveries focusing on autophagy, as a possible target pathway able to enhance the antitumor efficacy of CDK4 and CDK6 inhibitors is promising but needs more investigations. The aim of this review is to discuss the recent literature on the field in order to infer a rational combination strategy including cyclin-D1/CDK4-CDK6 inhibitors, RT, and/or other anticancer agents targeting G1-S phase cell cycle transition.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Peng Xia ◽  
Hao Zhang ◽  
Kequan Xu ◽  
Xiang Jiang ◽  
Meng Gao ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there still remains a lack of effective diagnostic and therapeutic targets for this disease. Increasing evidence demonstrates that RNA modifications play an important role in the progression of HCC, but the role of the N7-methylguanosine (m7G) methylation modification in HCC has not been properly evaluated. Thus, the goal of the present study was to investigate the function and mechanism of the m7G methyltransferase WD repeat domain 4 (WDR4) in HCC as well as its clinical relevance and potential value. We first verified the high expression of WDR4 in HCC and observed that upregulated WDR4 expression increased the m7G methylation level in HCC. WDR4 promoted HCC cell proliferation by inducing the G2/M cell cycle transition and inhibiting apoptosis in addition to enhancing metastasis and sorafenib resistance through epithelial-mesenchymal transition (EMT). Furthermore, we observed that c-MYC (MYC) can activate WDR4 transcription and that WDR4 promotes CCNB1 mRNA stability and translation to enhance HCC progression. Mechanistically, we determined that WDR4 enhances CCNB1 translation by promoting the binding of EIF2A to CCNB1 mRNA. Furthermore, CCNB1 was observed to promote PI3K and AKT phosphorylation in HCC and reduce P53 protein expression by promoting P53 ubiquitination. In summary, we elucidated the MYC/WDR4/CCNB1 signalling pathway and its impact on PI3K/AKT and P53. Furthermore, the result showed that the m7G methyltransferase WDR4 is a tumour promoter in the development and progression of HCC and may act as a candidate therapeutic target in HCC treatment.


2021 ◽  
Author(s):  
Kojo Agyemang ◽  
Michael Pennison ◽  
Minghui Wang ◽  
Allan Johansen ◽  
Hugo Jimenez ◽  
...  

2021 ◽  
Vol 4 (7) ◽  
pp. e202101022
Author(s):  
Hidenori Homma ◽  
Hikari Tanaka ◽  
Meihua Jin ◽  
Xiaocen Jin ◽  
Yong Huang ◽  
...  

The early-stage pathologies of frontotemporal lobal degeneration (FTLD) remain largely unknown. In VCPT262A-KI mice carrying VCP gene mutation linked to FTLD, insufficient DNA damage repair in neural stem/progenitor cells (NSCs) activated DNA-PK and CDK1 that disabled MCM3 essential for the G1/S cell cycle transition. Abnormal neural exit produced neurons carrying over unrepaired DNA damage and induced early-stage transcriptional repression-induced atypical cell death (TRIAD) necrosis accompanied by the specific markers pSer46-MARCKS and YAP. In utero gene therapy expressing normal VCP or non-phosphorylated mutant MCM3 rescued DNA damage, neuronal necrosis, cognitive function, and TDP43 aggregation in adult neurons of VCPT262A-KI mice, whereas similar therapy in adulthood was less effective. The similar early-stage neuronal necrosis was detected in PGRNR504X-KI, CHMP2BQ165X-KI, and TDPN267S-KI mice, and blocked by embryonic treatment with AAV–non-phospho-MCM3. Moreover, YAP-dependent necrosis occurred in neurons of human FTLD patients, and consistently pSer46-MARCKS was increased in cerebrospinal fluid (CSF) and serum of these patients. Collectively, developmental stress followed by early-stage neuronal necrosis is a potential target for therapeutics and one of the earliest general biomarkers for FTLD.


2021 ◽  
Vol 22 (11) ◽  
pp. 5754
Author(s):  
Tingting Zou ◽  
Zhenghong Lin

The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell-cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), the activities of which are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins and CDK inhibitors (CKIs). Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell-cycle process via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor proteins and oncoproteins or, inversely, abnormally high accumulation results in cell proliferation deregulation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the UPS machinery regulation of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell-cycle transition, cancer treatment, and the development of anti-cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document