Molecular Dissection of a Quantitative Trait Locus: A Phenylalanine-to-Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is Associated With a Major Effect on Milk Yield and Composition

Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 253-266 ◽  
Author(s):  
Sarah Blott ◽  
Jong-Joo Kim ◽  
Sirja Moisio ◽  
Anne Schmidt-Küntzel ◽  
Anne Cornet ◽  
...  

Abstract We herein report on our efforts to improve the mapping resolution of a QTL with major effect on milk yield and composition that was previously mapped to bovine chromosome 20. By using a denser chromosome 20 marker map and by exploiting linkage disequilibrium using two distinct approaches, we provide strong evidence that a chromosome segment including the gene coding for the growth hormone receptor accounts for at least part of the chromosome 20 QTL effect. By sequencing individuals with known QTL genotype, we identify an F to Y substitution in the transmembrane domain of the growth hormone receptor gene that is associated with a strong effect on milk yield and composition in the general population.

2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Dibyendu Chakraborty ◽  
Anamika . ◽  
D. Kumar ◽  
Peer Mohd. Azhar ◽  
S. Gurdeep Singh ◽  
...  

The Growth Hormone Receptor (GHR) gene provides instructions for making a protein called the growth hormone receptor. The GHR mediates biological actions of growth hormone on target cells by transducing the growth hormone (GH) signal across the cell membrane and inducing transcription of many genes, including insulin-like growth factor-1 (IGF1). The gene coding for bovine GHR gene consists of nine exons. In exon 8 of the bovine GHR gene, T/A nucleotide variation results in to change in tyrosine from phenylalanine in the transmembrane domain of the GHR protein, has been reported to be associated with a major effect on milk yield in cows. GHR (growth hormone receptor) gene has been shown to harbor a causal mutation of a QTL influencing milk yield and composition GHR gene is a polymorphic gene and the polymorphisms are related to different economic traits of different species. The GHR gene influences physical traits and helps to selection of animals. The lengths of the variable TG-repeats in the P1 promoter of the bovine GHR gene are associated with growth rates in young Angus cattle. Due to various functions of GHR are viewed as promising candidate markers for selection purposes in cattle. Thus GHR gene could be a candidate gene for application in marker assisted selection (MAS).


2005 ◽  
Vol 84 (11) ◽  
pp. 1052-1056 ◽  
Author(s):  
J. Zhou ◽  
Y. Lu ◽  
X.H. Gao ◽  
Y.C. Chen ◽  
J.J. Lu ◽  
...  

Genetic influences are important in the determination of mandibular morphology, and growth hormone receptor ( GHR) is believed to have an important influence on the growth of craniofacial bone. In this study, we used quantitative trait locus methods to evaluate the relationship between craniofacial morphology and single-nucleotide polymorphisms (SNPs) in GHR in an unselected healthy Chinese population. We systematically screened the 10 exons and nearby introns of GHR and identified 6 SNPs. Using 4 SNPs as markers, we studied the relationships between genotypes and craniofacial linear measurements. Individuals with the genotype CC of polymorphism I526L had a significantly greater mandibular ramus length (condylion-gonion/ articulare-gonion) than those with genotype AC or AA. Haplotype analysis showed that there were also significant differences between the long and short mandibular height groups in an extreme population. Our results indicate that the GHR gene polymorphism I526L is associated with mandibular height in the Chinese population.


Sign in / Sign up

Export Citation Format

Share Document