scholarly journals Prevalence of Sarcopenia and Predictors of Skeletal Muscle Mass in Healthy, Older Men and Women

2002 ◽  
Vol 57 (12) ◽  
pp. M772-M777 ◽  
Author(s):  
M. Iannuzzi-Sucich ◽  
K. M. Prestwood ◽  
A. M. Kenny
Aging ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 21023-21036
Author(s):  
Nicholas T. Kruse ◽  
Petra Buzkova ◽  
Joshua I. Barzilay ◽  
Rodrigo J. Valderrabano ◽  
John A. Robbins ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chuan-Wei Yang ◽  
Chia-Ing Li ◽  
Tsai-Chung Li ◽  
Chiu-Shong Liu ◽  
Chih-Hsueh Lin ◽  
...  

Abstract This study aimed to explore the combined effects of having sleep problems and taking sleeping pills on the skeletal muscle mass and performance of community-dwelling elders. A total of 826 participants who have complete information regarding dual-energy X-ray absorptiometry examination, questionnaire, and physical performance tests were included. The status of having sleep problems and taking sleeping pills was assessed with a self-reported questionnaire. The prevalence rates of sleep problems among older men and women were 37.4% and 54.5%, respectively. After multivariate adjustment, the mean height-adjusted skeletal muscle indices for elders having sleep problems and taking sleeping pills among men and women were 7.29 and 5.66 kg/m2, respectively, which were lower than those without sleep problems (P = 0.0021 and P = 0.0175). The performance of the older men having sleep problems and taking sleeping pills in terms of walking speed, grip strength, and number of squats, was poorer than those of the older men without sleep problems. The status of having sleep problems and taking sleeping pills was correlated with low skeletal muscle mass and poor physical performance in community-dwelling elders. These findings suggest that having sleep problems and taking sleeping pills are associated with having sarcopenia among community elderly.


1997 ◽  
Vol 82 (5) ◽  
pp. 1411-1415 ◽  
Author(s):  
David N. Proctor ◽  
Michael J. Joyner

Proctor, David N., and Michael J. Joyner. Skeletal muscle mass and the reduction ofV˙o 2 max in trained older subjects. J. Appl. Physiol.82(5): 1411–1415, 1997.—The role of skeletal muscle mass in the age-associated decline in maximal O2 uptake (V˙o 2 max) is poorly defined because of confounding changes in muscle oxidative capacity and in body fat and the difficulty of quantifying active muscle mass during exercise. We attempted to clarify these issues by examining the relationship between several indexes of muscle mass, as estimated by using dual-energy X-ray absorptiometry and treadmillV˙o 2 max in 32 chronically endurance-trained subjects from four groups ( n = 8/group): young men (20–30 yr), older men (56–72 yr), young women (19–31 yr), and older women (51–72 yr).V˙o 2 max per kilogram body mass was 26 and 22% lower in the older men (45.9 vs. 62.0 ml ⋅ kg−1 ⋅ min−1) and older women (40.0 vs. 51.5 ml ⋅ kg−1 ⋅ min−1). These age differences were reduced to 14 and 13%, respectively, whenV˙o 2 max was expressed per kilogram of appendicular muscle. When appropriately adjusted for age and gender differences in appendicular muscle mass by analysis of covariance, whole bodyV˙o 2 max was 0.50 ± 0.09 l/min less ( P < 0.001) in the older subjects. This effect was similar in both genders. These findings suggest that the reducedV˙o 2 max seen in highly trained older men and women relative to their younger counterparts is due, in part, to a reduced aerobic capacity per kilogram of active muscle independent of age-associated changes in body composition, i.e., replacement of muscle tissue by fat. Because skeletal muscle adaptations to endurance training can be well maintained in older subjects, the reduced aerobic capacity per kilogram of muscle likely results from age-associated reductions in maximal O2 delivery (cardiac output and/or muscle blood flow).


Sign in / Sign up

Export Citation Format

Share Document